Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоперенос при химической реакции

    Можно допустить, что термодинамическое совершенство процесса разделения в реакционно-диффузионных мембранах также окажется функцией величин Ф,, а,/, х и 1Х Аг. Если использовать значения ац и Л1 = Ф,Л,-, то потери эксергии в мембранах такого типа можно вычислить по уравнениям (7.47) и (7.52), эксергетический к. п. д. проницания по соотношениям (7.54) —(7.56), (7.64) и (7.66), приведенные плотности проникшего целевого и суммарного потоков — по уравнениям (7.58), (7.59) и (7.67), состав проникшего потока по выражениям (7.62) и (7.65). Применимость соотношений несопряженного массопереноса для расчета эффективности разделения в реак-ционно-диффузионных мембранах основано на общности подхода, трактующего мембрану в сечении как точечную систему с конечным значением движущей силы на границах, т. е. как черный ящик . При этом предполагается, что перенос компонентов смеси сопряжен только с химической реакцией, взаимно их потоки независимы. [c.249]


    Метод анализа массопереноса с одновременной химической реакцией в соответствии с моделью, предложенной Хатта, допускает многие упрощающие предположения. Например, было принято, что компонент В в системе находится в избытке. Это позволило вывести кинетическое уравнение рассматриваемой реакции, которое имело первый порядок. В случае реакции п-то порядка (порядок реакции по компоненту А — первый, по компоненту В он равен п—1, суммарный порядок п) принимается следующее выражение для константы скорости [c.257]

    К явлению химической абсорбции тесно примыкает процесс одновременного массопереноса через границу раздела фаз и химической реакции, в котором вблизи границы раздела фаз градиент скорости не равен нулю. [c.115]

    В литературе представлен ряд гидродинамических моделей поверхности раздела жидкость — газ. Некоторые из них будут здесь обсуждены. Все гидродинамические модели основаны на предположении о нулевом градиенте скорости в жидкости. Однако необходимо напомнить, что условие нулевого градиента скорости у границы раздела системы газ — жидкость является не очень строгим применительно к теории химической абсорбции, хотя можно показать, что в большинстве случаев отношение скоростей массопереноса в жидкости при наличии или отсутствии химической реакции не зависит от частных гидродинамических условий в ней. [c.14]

    Уравнения (1.23а), (1.28), (1.38) и (1.1) образуют обобщенную систему гидромеханических уравнений, которая может служить основой полного математического описания многофазных многокомпонентных смесей с химическими реакциями и процессами тепло- и массопереноса. Однако эта система уравнений еще не замкнута не определены кинетические и равновесные характеристики фаз. Для замыкания этой системы необходимо привлечение дополнительных (термодинамических и механических) свойств фаз, рассмотрение энергетических переходов при фазовых превращениях, учет равновесия многокомпонентных систем, формулировка метода определения кинетических параметров уравнений. [c.50]

    Среди дисперсных систем с твердой фазой наибольший интерес в аспекте интенсивности теплопереноса представляет собой псевдоожиженный слой, в особенности — при псевдоожижении газами. Химико-технологические процессы (массоперенос, химические реакции), проводимые в псевдоожиженном слое, нередко сопровождаются выделением или поглощением теплоты, которую необходимо отвести из слоя (подвести в него). С этой целью непосредственно в слое размещают теплопередающую поверхность коэффициенты теплоотдачи от слоя к поверхности аде достаточно велики, так что удается обойтись весьма компактными поверхностями. [c.506]


    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    Стадии 2—4 могут протекать одновременно и таким образом взаимно накладываться суммарный результат этих стадий осуществляется после стадии 1. Если, например, стадия 1 определяет скорость, то общая скорость не зависит от химической реакции и процесс может рассматриваться как простое явление массопереноса, которое не зависит от скорости реакции. Сама химическая реакция может быть причиной высокой общей скорости массопереноса в пределах фазы 2 и поэтому стадия 1 будет лимитировать скорость. [c.13]

    Исследуем влияние степени сопряжения и отношения движущих сил массопереноса и химической реакции на энергетическую эффективность мембранного процесса. Процесс буде.м считать изотермичным (Г=7 ср), проницание компонентов газовой смеси взаимно независимым, кроме того, допустим, что сопряжение с химической реакцией наблюдается только для целевого компонента 1, все остальные ( >1) мигрируют в матрице мембраны только под действием внешней движущей силы —А я.. [c.250]

    Решение задачи о нестационарном конвективном массопереносе в системах с объемными химическими реакциями проведено в статье В. С. Крылова (Жидкостная экстракция. Труды III Всесоюзного совещания, Изд. Химия , 1969, стр. 145). Результаты этой работы позволяют установить область применения к системам такого типа модели Данквертса, которая оказывается весьма ограниченной. — Прим. редактора . [c.19]

    Очевидно, решения задач массопереноса с химической реакцией первого порядка для различных гидродинамических условий можно только сравнить на основе графической зависимости безразмерных величин / от V- Параметр у имеет вид  [c.56]

    В примерах приведен анализ процессов при сопоставимых скоростях химического превращения и массопереноса или при более медленной химической реакции по сравнению с массопередачей. [c.207]

    В случае процесса, проходящего в гетерогенной системе и сопровождаемого химической реакцией, расчет наблюдаемой скорости превращения требует, как указано выше, учета параметров, имеющих решающее значение как для скорости химической реакции, так и для массопереноса. Для этого можно использовать различные методы. Один из них основан на изучении превращения в установившемся режиме, т. е. в состоянии динамического равновесия. Предположим, что реакционная система состоит из твердой фазы и жидкости (газа), в ядре потока которой концентрация исходного вещества постоянна и равна С. Исходное вещество диффундирует к межфазной поверхности и достигает там концентрации С . Скорость химической реакции на межфазной поверхности является функцией этой концентрации. При установившемся режиме количество исходного вещества, которое должно прореагировать в единицу времени на единице межфазной поверхности, равно количеству исходного вещества, перенесенному в зону реакции в результате диффузии. Для реакций первого порядка справедлива следующая зависимость [c.247]

    Отсюда можно сделать вывод, что в данном случае влияние химической реакции на массоперенос может быть выражено следующим образом  [c.253]

    Следовательно, в таких мембранах интенсификация массопереноса за счет сопряжения с химической реакцией оправдана, если т. е. эффект особенно заметен при малой внешней движущей силе процесса диффузии (например в случае извлечения небольших, но токсичных примесей в исходной газовой смеси ЗОг, КОг и др.) или при низких значениях коэффициента диффузии компонента в мембране Я п- оо). [c.22]

    Характер газового потока через пузырь (который является причиной рассматриваемого явления в целом) может изменяться от проточного (от основания к лобовой части) до замкнутой циркуляции. Последняя в предельном случае весьма сходна с конвективными токами внутри всплывающего в жидкости пузыря, возникающими благодаря действию нисходящего потока вязкой жидкости. Подробное изучение газового потока через пузыри представляет значительный интерес в тех случаях, когда существенное значение имеет массоперенос или химическая реакция между газом и твердыми частицами. Характер движения газа [c.133]


    Величину Т1 определяют путем сравнения решения, полученного с учетом и эф, и решения, где скорость массопереноса и химической реакции учтены раздельно. Если, например, осуществляется обратимая реакция первого порядка с констаитами скоростей и /Са и константой равновесия к = к- /к (случай довольно общий), то [c.84]

    При переносе потока вещества в химическом аппарате происходит изменение его концентрации, температуры за счет химических реакций, тепло-и массопереноса. Поэтому при переходе к моделям расчета соответствующих аппаратов необходимо уравнения описывающие гидродинамическую структуру потоков, дополнить членами, учитывающими источники и стоки массы и тепла потоков (в зависимости от того, образуется или расходуется масса или энергия), т. е. учитывать соответственно диффузионные, химические, термокинетические составляющие. [c.125]

    К фундаментальным знаниям относятся общие закономерности, основанные на фундаментальных законах или теориях процесса. Эти знания характеризуют теоретический уровень рассмотрения проблемы, являясь основополагающими при построении системы. Это, нанример, закон сохранения вещества, энергии и импульса, термодинамические условия фазового равновесия, законы кинетики химических реакций, тепло- и массопереноса и т. д. Выражение закона или закономерности обычно многовариантное в силу общности, и конкретизация обеспечивается раз- [c.89]

    Качественный анализ структуры ФХС. Основу структурного анализа ФХС составляет обобщенная система гидромеханических уравнений с учетом физико-химических процессов, протекающих в технологическом аппарате. Замкнутая система уравнений термогидродинамики многокомпонентной неидеальной двухфазной смеси, в которой протекают химические реакции, осложненные процессами тепло- и массопереноса, сформулирована в работе [6 ] и подробно рассмотрена в 1.2—1.4 настоящей монографии. Эта система уравнений, во-первых, может служить исходным пунктом при переходе к математическому описанию частной инженерной задачи во-вторых, она вскрывает структуру движущих сил и потоков, развивающихся в локальном объеме аппарата и отражающих специфику физико-химических процессов в нем. [c.10]

    Книга Массопередача с химической реакцией написана известным в этой области исследователем Дж. Астарита и посвящена одной из сложнейших областей химической технологии. Необходимость выделения в относительно самостоятельную область процессов массопереноса в присутствии химических реакций давно назрела, поэтому появление монографии Дж. Астарита должно, безусловно, способствовать привлечению внимания исследователей к процессам такого типа. [c.5]

    В настоящее время все больше появляется работ, в которых собственно химическое превращение веществ осуществляется совместно с целенаправленным разделением реакционной смеси в одном и том же аппарате. Сюда можно отнести работы, посвященные исследованию хроматографического эффекта в реакторах, реакционно-абсорбционным и реакционно-экстракционным процессам, а также процессам, в которых химическое превращение успешно сочетается с ректификацией или отгонкой. Известны реакционноосмотические процессы, реакционно-отделительные процессы и многие другие случаи направленного совмещения. В любом из перечисленных процессов химическая реакция составляет единую сложную систему с массопереносом. Естественно, монография Дж. Астарита далеко не восполняет пробела, образовавшегося за последнее время в данной области. Ее задача более скромна — систематизировать в основном знания в области химической абсорбции и дать некоторые толкования механизма столь сложного процесса. Отметим, что наряду с предпочтительностью изложения вопросов, в решении которых принимал непосредственное участие автор, в предлагаемой вниманию читателей монографии существуют и другие крайности. Так, например использованные автором модели массопереноса если и нельзя считать устаревшими, то во всяком случае, далеко не адекватными наблюдаемым явлениям, которые необходимо уточнить. Кроме того, библиография по затронутым в книге вопросам более чем скромна и за редким исклю- Йнием не включает многие исследования, выполненные отечественными исследователями хотя бы в последнее десятилетие. Однако эти серьезные недостатки не обесценивают рассматриваемую монографию, так как представленный в ней в обобщенном виде материал все же дает некоторое представление о современном совтоя-нии затронутых вопросов. [c.5]

    Интересен также анализ массопередачн с химической реакцией, когда скорость суммарного явления стадий 2—4 лимитирует процесс. Поэтому в книге главным образом проводится анализ взаимного влияния этих трех стадий, которые протекают совместно в фазе 2 под действием общей движущей силы, обусловленной тем, что один или несколько реагентов непрерывно переносятся из фазы 2 в фазу 1. Предполагается, что в любом случае вклад явления массопереноса в общее сопротивление массопереноса в пределах фазы 1 учитывается отдельно. [c.13]

    При рассмотрении процесса химической абсорбции в режиме мгновенной реакции не всегда можно пренебрегать сопротивлением массопереносу в газовой фазе, так как на кЬэффициент массоотдачи в жидкой фазе оказывает сильное влияние химическая реакция. [c.101]

    Когда в реактор непрерывно поступает поток реагентов и в то же время непрерывно отводится поток продуктов реакции, на чистый поток может накладываться явление перемешивания вещества в направлении движения последнего. Общая конверсия, которая может быть получена в данном реакторе при закрепленных условиях питания, сильно зависит от вклада продольного перемешивания в пределах собственно реактора. В самом широком смысле явление продольного перемешивания — это процесс массопереноса. Таким образом, исследование продольного перемешивания в химическом реакторе относится к области массопередачн с химической реакцией. [c.120]

    Совместное проведение химических реакций с некоторым разделением реакционной смеси в одном и том же аппарате составляет предмет довольно много-числепны.ч исследований, а также является одним из технологических вариантов проведения процессов на практике. В качестве предмета исследования совмещенный процесс рассматривается в основном с позиций взаимного влияния массопереноса и химической реакции. Эти вопросы изучает макрокинетика и теория процессов массопередачи. Как технологический вариант проведения процессов в практике совмещенный процесс используется потому, что часто оказывается наиболее выгодным и сравнительно простым. Рациональное использование явлений переноса массы в момент проведения химической реакции обеспечивает до-Аолнительные возможности процессу как в кинетическом, так и в термодинамическом аспектах. Условия равновесия в системе с химическим взаимодействием компонентов могут быть рассмотрены в рамках термодинамики гетерогенных систем. [c.186]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Количественный анализ массопередачи в портстой структуре катализатора и связь ее с наблюдаемыми (кажущимися) характеристиками реакций является предметом многочисленных исследований. Общий теоретический подход при анализе рассматриваемых систем, основанный на известных принципах диффузионной кинетики, сводится к выводу уравнений, описьшающих одновременное протекание массопереноса и химической реакции на активной поверхности катализатора. При этом учитьгеается, что реагенты и продукты реакции диффундируют в грануле катализатора в противоположных направлениях. [c.79]

    Пример 6.1. Бензойная кислота при экстракции из бензольной капли вступает в химическую реакцию с растворенным в водной фазе гидрооксидом натрия. Диаметр капли диффузии бензойной кислоты в воде О, =1,02 10 м /с, коэффициент даффузии N3011 в воде >5 = 1 4- 10 м /с, начальная концентрация бензойной кислоты в бензоле с,, = 0,5 мол1 л, а концентрация щелочи в воде с,, =0,75 моль/л. Коэффициент распределения бензойной кислоты между бензолом и водой ф=с 1с =40. Рассчитать скорость массопереноса и определить, во сколько раз изменится ее величина при увеличении концентрации NaOH в исходном растворе до 3 моль/л. [c.276]

    Решение. Рассматриваемый пример С,Н,СООН+ЫаОН=С Н5 - OONa + + Н,0 относится к случаю мгновенной химической реакции, протекающей в обье-ме сшюшной фазы. Сопротивление массопереносу сосредоточено в той же фазе. [c.276]

    Бабак В. Н., Холпанов Л. П., Малюсов В. А., Жаворонков Н. М., в сб. Тепло- и массоперенос , т. 4, Минск, 1972, стр. 227. Установившийся массообмен в системе жидкость—газ в условиях ламинарного нисходящего прямотока, осложненный химической реакцией псевдопервого порядка. [c.268]

    Качественное исследование систем уравнений, оиисывающих стационарные режимы работы гетерогенных каталитических реакторов, свидетельствует о множестве стационарных состояний. Причинами множественности стационарных состояний являются нелинейности кинетики химических реакций, а также транспортные эффекты, среди которых наиболее существенны тепло- и массоперенос между поверхностью зерен катализатора и реакционным потоком, перемешивание потока в радиальном и осевом направлениях отвод (подвод) тепла, выделяющегося (поглощающегося) в ходе химических реакций [1, 2]. [c.281]

    Итак автоколебания в гетерогенно-каталитической системе могут возникнуть, если система открыта, система нелинейна и в системе существует обратная связь. В открытой гетерогенно-каталитической системе выделяются следующие стадии транспорта и химического превращения реагирующих веществ подача в реактор массо- и теплоперенос к активной поверхности катализатора адсорбция исходных веществ на активных центрах катализатора реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя десорбция продуктов реакции массоперенос продуктов реакции от активной поверхности катализатора вывод из реактора продуктов реакции. [c.316]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    Потери эксергии при проницании всех компонентов под действием внешней движущей силы можно вычислить по уравнениям (7.50) и (7.51), убыль эксергии энтальпии определяюттак же, как это сделано ранее, в разд. 7.2.2. Потери эксергии в химических реакциях и в вызванном ими дополнительном массопереносе оценим позже. [c.251]

    Вопрос о коэффициенте межфазного массопереноса в случае катализсггора в виде утопленной насадки изучен недостаточно. Можно предполагать, что при достаточно малой толщине пленки жидкости на поверхности катализатора будет проявляться влияние химической реакции на коэффициент массопередачи, аналогично тому, как это показано в гл. 13 для двухфазного реактора. Однако поскольку доля такой поверхности в общей поверхности [c.189]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    В связи с этим необходим анализ возможных разогревов зерна катализатора при регенерации. Такой анализ приведен в главе 6. Очевидна также. нео бходамость изучения процессов превращения вещества и тепла на единичном зерне, чему посвящены главы 3 и 4. Подчеркиваем также, что анализ устойчивости требует определения как коэффициентов тепло- и массопереноса, так и предэкспоненциальных множителей и энергий активации химических реакций. [c.18]

    Рассматривая совокупность физико-химических эффектов и явлений, возникающих в процессе стесненного движения ансамбля капель жидкой или пузырьков газовой фазы в сплошной жидкой среде, естественно выделить пять ступеней иерархии этих эффектов ) совокупность явлений на атомарно-молекулярном уровне 2) эффекты в масштабе надмолекулярных или глобулярных структур 3) множество физико-химических явлений, связанных с движением единичного включения дисперсной фазы, с учетом химических реакций и явлений межфазного энер-го- и массопереноса 4) физико-химические процессы в ансамбле включений, перемеш,аюи ихся стесненным образом в слое сплошной фазы 5) совокупность процессов, определяюш их мак-рогидродинамическую обстановку в масштабе аппарата. [c.42]

    С точки зрения химической технологии важно знать, на что расходуется энергия, подводимая к аппарату. Все виды энергозатрат на протекание необратимых процессов в системе характеризует диссипативная функция ФХС (локальное производство энтропии). Диссипативная функция многокомпонентной неидеальной двухфазной дисперсной смеси, в которой протекают химические реакции совместно с процессами тепло- и массопереноса, получена в работах [6, 71 и подробно анализируется в 1.4 книги. Разложение диссипативной функции на движущие силы и потоки приведено в табл. 1. Таблица движущих сил и потоков, дополненная энергетическими переменными систем гидравлической, электромеханической и псевдоэнергетической природы, служит основой при построении комплекса процедур автоматизированного формирования математических моделей, исходя из топологического принципа формализации ФХС. [c.10]


Смотреть страницы где упоминается термин Массоперенос при химической реакции: [c.123]    [c.166]    [c.213]    [c.214]    [c.254]    [c.228]    [c.15]    [c.22]    [c.24]    [c.35]   
Теория химических процессов основного органического и нефтехимического синтеза Издание 2 (1984) -- [ c.246 , c.305 ]




ПОИСК





Смотрите так же термины и статьи:

Внутренние задачи массопереноса при наличии объемной химической реакции

Качественные особенности внутренних задач конвективного массопереноса, осложненного объемной химической реакцией

Массоперенос

Массоперенос в потоке с объемной химической реакцией

Массоперенос к сферической частице в поступательном потоке. Поверхностная химическая реакция первого порядка

Массоперенос с учетом химических реакций

Массоперенос, осложненный поверхностной химической реакцией

Структура диссипативной функции многокомпонентной многофазной смеси, где протекают химические реакции и процессы тепло- и массопереноса



© 2024 chem21.info Реклама на сайте