Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метаболизм ФОС окисление

    Поскольку даже полное определение микробной биомассы не всегда отражает биохимическую активность отдельной популяции, целесообразной становится прямая оценка этой активности. В аэробном метаболизме окисление органического вещества определяется прямым потреблением кислорода в закрытой системе. Оценка кислорода как конечного акцептора электронов имеет определенные преимущества перед аналитическими методами определения промежуточных продуктов. [c.242]


    К счастью, многие процессы в живых организмах имеют также и запасные пути протекания. Часто при этом в качестве исходных веществ используются различные соединения. Например, если запасы глюкозы в организме истощаются, то основанные на этом веществе энергетические процессы останавливаются. При этом в одном из запасных вариантов происходит окисление жиров, в другом - разрушаются и превращаются в глюкозу структурные белки. Как только глюкоза снова начинает поступать в организм, ее метаболизм возобновляется. Получение глюкозы из белков значительно менее энер- [c.256]

    Значительный успех на этом пути снова был достигнут благодаря процессам координационной химии. Центральную роль в механизме аэробного метаболизма, который приводит к полному сгоранию органических молекул, играют цитохромы. Так называются молекулы, в которых атом железа связан в комплекс с порфирином, образуя с ним гем (см. рис. 20-20), а гем связан с белком. Атом железа переходит из состояния окисления 4- 2 в + 3 и обратно в результате переноса электронов от одного компонента цепи к другому. Весь аэробный механизм представляет собой совокупность тесно связанных друг с другом окислительно-восстано-вительных реакций, окончательным результатом которых является процесс, обратный фотосинтезу  [c.257]

    При аэробном или анаэробном метаболизме организмы получают энергию в процессе окисления подложки — сахара (глюкозы) или какого-либо другого материала (битума). Это окисление с выделением энергии происходит путем перехода протонов или электронов через ряд стадий, регулируемых ферментами, до появления конечного акцептора электронов. В аэробных процессах конечным акцептором электрона или иона водорода является кислород. В анаэробных процессах таким акцептором является окисленный материал типа нитрата или сульфата. Опыт показал, что аэробный метаболизм эффективнее анаэробного, так как для роста в аэробных процессах требуется меньше материала подложки, чем в анаэробных при одинаковом количественном росте бактерий. Причиной такого явления, известного как эффект Пастера, является большее выделение энергии в процессе аэробного метаболизма. [c.186]

    Последовательности ферментативных окислительно-восстановительных реакций лежат в основе клеточного метаболизма энергии. Энергия, освобождаемая при окислении восстановленных органических или неорганических соединений, запасается с различной эффективностью в виде таких удобных форм, как АТР, мембранные потенциалы или восстановленные коферменты. Механизм действия ферментов, катализирующих процессы электронного переноса, активно изучается, что связано с их вал<ной физиологической ролью. [c.399]


    Основным условием биоразложения нефтепродуктов является присутствие воды и минеральных солей, источников азота (питательной среды для микроорганизмов) и свободного кислорода (3—4 мг/мг насыщенного углеводорода для полного окисления в углекислоту и воду). Биоразложение протекает при температурах от -2 до 70"С (оптимально при 20—25"С) и ускоряется при диспергировании среды. Оказывает влияние присутствие зафязнений типа бензина и керосина, ингибирующих хемотропизм — перемещение живых клеток и микроорганизмов под действием химических веществ. Продуктами биоразложения являются диоксид углерода, вода, аммиак, сероводород, гидропероксиды, спирты, фенолы, карбонилсодержащие соединения, жирные кислоты и сложные эфиры, а также клеточная масса и продукты обмена веществ микроорганизмов (метаболизма) — метаболиты, в том числе слизи полисахаридного состава [21]. [c.82]

    При превращениях (метаболизме) углеводов (прежде всего глюкозы) в организмах животных и растений поглощенная солнечная энер-г-ия выделяется при их окислении  [c.258]

Рис. 18.8. Схематическая диаграмма некоторых превращений свободной энергии в процессе метаболизма живой клетки. Окисление глюкозы с образованием СО и Н2О приводит к выделению свободной энергии. Выделившаяся свободная энергия идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по мере необходимости как источник энергии для превращения простых молекул в более сложные составные части живой клетки. Когда молекула АТФ выделяет свободную энергию, она превращается в молекулу АДФ. Рис. 18.8. <a href="/info/96413">Схематическая диаграмма</a> некоторых <a href="/info/502431">превращений свободной энергии</a> в <a href="/info/1418567">процессе метаболизма</a> <a href="/info/477428">живой клетки</a>. <a href="/info/16188">Окисление глюкозы</a> с образованием СО и Н2О приводит к <a href="/info/71519">выделению свободной</a> энергии. Выделившаяся <a href="/info/2431">свободная энергия</a> идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по <a href="/info/1743590">мере необходимости</a> как <a href="/info/98823">источник энергии</a> для <a href="/info/1326526">превращения простых</a> молекул в более <a href="/info/1081104">сложные составные части</a> <a href="/info/477428">живой клетки</a>. <a href="/info/1460606">Когда молекула</a> АТФ выделяет <a href="/info/2431">свободную энергию</a>, она превращается в молекулу АДФ.
    Но окисление полиненасыщенных кислот в липидах вовсе не представляет собой необходимого для метаболизма этапа и этот процесс, протекающий легко и ведущий к накоплению гидроперекисей,, несомненно, вреден для клетки  [c.320]

    Одним из основных параметров, характеризующих обмен выделенных митохондрий, является их способность к поглощению кислорода и зависимость скорости дыхания от присутствия акцепторной системы (АДФ-ЬФн) (см. также с. 462). В связи с этим для изучения метаболизма митохондрий необходимо иметь метод, позволяющий точно измерить поглощение кислорода при окислении митохондриями тех или иных субстратов. [c.480]

    Пируват может быть окислен как источник энергии или использован для синтеза клеточных компонентов. Весь этот путь, по всей видимости, занимает важное место как в метаболизме растений и животных [72], так и в метаболизме бактерий. [c.121]

    Биотрансформация. В организме подвергается метаболизму. Окисление происходит в микросомах печени (Durand, Tulliez). Ткань мозга крыс превращает Г. в гексадеканол (Su, S hmid). Дальнейшая биотрансформация происходит по схеме со-окисления жирных кислот. [c.41]

    Как показал опыт, влияние микробиологического процесса на углеводородный состав нефти носит вполне закономерный и направленный характер. В начальные этапы окисления (2 мес.), как обычно, затрагиваются нормальные алканы ia— ig. По мере углубления бактериального процесса содержание этих алканов непрерывно убы-вало, при этом окислению подвергался более широкий спектр этих углеводородов вплоть до Сз47 что хорошо видно на хроматограмме (рис. 85, в). К концу 5-го месяца микроорганизмы использовали свыше 90% нормальных алканов исходной нефти. На этой стадии несколько уменьшилась и общая концентрация разветвленных алканов. Хроматографическое исследование показало, что это уменьшение произошло в основном за счет вовлечения в процесс окисления монометилзамещенных структур (изо- и антеизоалканов). Относительное содержание изопреноидов в течение этого времени непрерывно возрастало за счет остаточного накопления. Поскольку изопреноиды на этой стадии еще не подверглись метаболизму, то не изменились ни их относительное концентрационное распределение, ни соотношение пристан/фитан. Зато значительно выросла величина Ki. Образовалась нефть типа А . [c.237]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]


    Биолог. Потому, что для метаболизма в клетке часто требуются гораздо меньшие порхщи энергии, чем те, которые вьщеляются при окислении молекул глюкозы. Если бы лишняя энергия не запасалюь в форме АТФ, она неизбежно превращалась бы в тепло и организм вряд ли мог бы существовать... [c.36]

    Очевидно, что найденное понижение энтропии при возникновении даже сложнейшей биологической структуры — организма человека — на самом деле незначительно. По величине оно эквивалентно, например, уменьшению энтропии при конденсации 170см паров воды. В процессах метаболизма понижение энтропии на 1200 Дж/К с легкостью может компенсироваться увеличением энтропии при окислении 900 г глюкозы. [c.400]

    На внешних мембранах находятся ферменты, необходимые для процесса метаболизма жирных кислот, окисления р-оксимасляной кислоты, окисления аминов и т. п. [c.390]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    На примере деструкции фенола рассматривается возможность совершенствования процесса обезвреживания токсичных стоков ксенобиотиков с использованием гибридной системы очистки с совмещением процесса химического и биологического окисления по месту и времени. Показана возможность биологического окисления токсичных веществ в виде высококонцентрированных стоков в условиях замкнутой системы. Процесс реализуется с использованием микробного ценоза, преадаптированного к окислительному стрессу в периодическом режиме с подпиткой концентрированным субстратом. Полученные показатели в 2-3 раза (по скорости окисления) и в 10-20 раз (по количеству суммарно окисленного фенола в среде биологического культивирования) превышают величины, реализуемые в традиционных процессах биологического окисления. Обнаруженное явление роста преадаптированной к окислительному стрессу популяции микроорганизмов без накопления токсичных продуктов метаболизма позволяет создавать малоотходные высокопроизводительные системы культивирования микроорганизмов и биологической очистки и обезвреживания высококонцентрированпых стоков. [c.227]

    Один из методов повышения производительности биореакторов в технологии биосинтеза связан с так называемым "высокоплотностным культивированием" микроорганизмов, которое реализуется при проведении процесса по специальной программе с подпиткой субстратом в периодическом режиме культивирования [24]. Это повышает концентрацию клеток микроорганизмов в среде культивирования и при поддержании неизменной удельной скорости биосинтеза общую производительность биореактора. Однако такой процесс требует тщательного выдерживания необходимых параметров биосинтеза (прежде всего текущей концентрации органического субстрата и концентрации растворенного кислорода, а также pH и содержания минеральных компонентов питания). Кроме того, питательные субстраты должны подаваться в биореактор в концентрированном виде. Процесс с подпиткой был бы одним из наилучших решений при биологическом обезвреживании концентрированных токсичных стоков и отходов, поскольку он может привести не только к увеличению производительности биореактора, но и к уменьшению объема вторичных стоков и отходов со стадии биологической очистки, Однако применительно к переработке токсичных соединений возможности тфоцесса с подпиткой резко ограничиваются из-за образования побочных продуктов метаболизма, ингибирующих процесс окисления. Так, в наших экспериментах в обычными консорциумами фенолдеструкторов ингибирование окисления в режиме с [c.235]

    В метаболизме природных липидов, содержащих ПНЖК, велика роль окислительных процессов, происходящих по механизмам как авто-, так и фотоокисления В биологических системах одной из причин перекисного окисления липвдов является взаимодействие субстрата с окислителем в присутствии фотосенсибилизаторов. [c.47]

    Исследование взаимосвязи путей метаболизма биологически активных соединений представляет научный и практический интерес. В метаболизме природных липидов процессы ферментативного окисления жирных кислот непосредственно влияют на содержание полиненасыщенных жирных кислот (ПНЖК) в клетке. Липоксигеназы (ЛОГ) КФ 1.13.11.12 относятся к классу железосодержащих оксигеназ и катализируют стереоспеци-фическое окисление ПНЖК, молекулы которых содержат хотя бы один 1,4 [c.15]

    Одним из проявлений биологической функции селена в животном организме служит его участие в обмене серосодержащих аминокислот. Этот элемент предохраняет от окисления SH-группы белков мембран эритроцитов и митохондрий, а также противодействует набуханию митохондрий, вызываемому тяжелыми металлами. Селеноаминокислоты, образовавшиеся в результате метаболизма селена, обладают радиопротектор-ными свойствами, ингибируя образование свободных радикалов и способствуют детоксикации таких вредных отходов производства, как метил-ртуть и соли кадмия а также висмута, таллия и серебра [c.18]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Представление об основных биохимических процессах, происходящих в клетках, на примере сапрофитных микроорганизмов с аэробным типом питания [2], дает упрощенная схема метаболизма на рис. 1.2. Даже в таком упрощенном виде схема позволяет оценить многообразие и сложность внутриклеточных процессов, насчитывающих несколько тысяч реакций, в результате которых синтезируются клеточные вещества. Математическое описание всей совокупности данных реакций и использование такой модели для практических целей представляет собой чрезвычайно сложную задачу. Наряду с микробиологическими процессами, направленными на образование биомассы микроорганизмов или ценных продуктов клеточного метаболизма большую роль в БТС занимают процессы биологической очистки, протекающие с участием бактериальных клеток по следующей трофической схеме органические загрязнениям бактерии-> простейшие. В процессе биологической очистки сточных вод, содержащих органические и минеральные вещества, формируется биоценоз активного ила, включающий бактерии, простейшие и многоклеточные организмы. В процессе потребления органических загрязнений происходит интенсивный рост бактерий и ферментативное окисление органических веществ. По мере удаления из среды питательных веществ происходит эндоген- [c.10]

    У ЖИВОТНЫХ этот цикл повторяется до достижения нужной длиньи углеродной цепи кислот. Подобный механи зм объясняет, почему все жирные кислоты содержат нормальную цепь и четное число углеродных атомов. В некоторых бактериях этот цикл обрывается на стадии образования масляной кислоты. В нормальных организмах промежуточные продукты цикла связаны через кофермент с белком и не могут быть выделены из липидной фракции. При диабете метаболизм нарушается,, и продукты неполного окисления (извеспные под названием етоновых тел) накапливаются в крови и моче (кетонурия). Кетоновые тела включают промежуточные продукты цикла ацетоуксусную кислоту (и ацетон как продукт расщепления последней) и а-оксимасляную кислоту. [c.732]

    ОН-цикло-РСР (IV) — продукт гидроксилировании циклогексанового кольца в положение 3 найден среди продуктов окисления РСР микросомами печени и плаценты организма человека (in vitro), а также является метаболитом организма животных (мышей, крыс, обёзьян, кроликов и собак). Для метаболизма животных также характерно гидроксилирование в положение 3 пиперидинового цикла с образованием 3-ОН-пип-РСР [81. [c.155]

    Первоначально считали, что путь В занимает важное место в метаболизме млекопитающих, но, как оказалось, он может быть использован только для расщепления О-лизина. Этот путь, установленный для Р8еийотопа5 рШШа [53], тоже представляет собой переаминирование, проходящее через последовательные этапы восстановления и окисления. На этот раз процесс носит внутримолекулярный характер выступающая в роли окислителя карбонильная группа образуется путем переаминирования а-аминогруппы лизина. На пути Г, который, по-видимому, используется в дрожжах [54], ацетилирование е-аминогруппы, предшествующее переаминированию, позволяет избежать образования промежуточных циклических соединений. Далее а-кетогруппа эффективно блокируется путем восстановления в спирт, затем отщепляется ацетильная группа, блокировавшая е-аминогруппы, и этот конец молекулы прямым путем оки< ляется с образованием карбоксильной группы. [c.109]

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]

    Одним из первых замеченных врожденных нарушений метаболизма была алкаптонурия — отсутствие оксигеназы, расщепляющей кольцо го-могентизиновой кислоты [122]. Заболевание легко распознать по следующему признаку моча при стоянии приобретает темно-бурый цвет (что объясняется окислением гомогентизата). Алкаптонурия была правильно охарактеризована Гарродом (дополнение 1-Г) в 1909 г. как нарушение катаболизма тирозина. [c.145]

    Изучение полифункциональных природных соединений целесообразно начать с классов оксикислот, оксокис-лот и аминоспиртов, поскольку, во-первых, эти соединения достаточно широко представлены в живом мире на различных этапах его проявления — они встречаются в свободном виде (гидрок-сикислоты растений) и как фрагменты достаточно сложных молекул (фосфолипиды и сфингозины животных и бактерий), некоторые из них образуются в процессе метаболизма веществ первичного биосинтеза(окисление жирных [c.18]


Смотреть страницы где упоминается термин Метаболизм ФОС окисление: [c.150]    [c.188]    [c.454]    [c.390]    [c.238]    [c.431]    [c.120]    [c.147]    [c.192]    [c.383]    [c.47]    [c.26]    [c.206]    [c.240]    [c.243]    [c.116]    [c.118]   
Токсичные эфиры кислот фосфора (1964) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте