Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения высокополимеры

    По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из высокомолекулярных соединений, находящихся в природе в готовом виде (целлюлоза, казеин и др.), и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров. Применение химических волокон растет с каждым годом. Этому способствует высокая экономическая эффективность их получения и применения, полная независимость производства от климатических и почвенных условий, практическая неисчерпаемость сырьевых ресурсов и возможность выпуска волокон с новыми, невиданными ранее свойствами. Так, затраты в человеко-днях на производство 1 т волокна составляют для шерсти (мытой) 400, для хлопка 238, а для вискозного штапеля всего 50. Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойств в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления ткани, трикотаж, меховые изделия, одежда, обувь, обивка, спортинвентарь, драпировки, щетки, бортовая ткань, галантерея, заменители кожи, а также технические изделия корд, фильтровальные ткани, обивка для машин, рыболовные снасти, не гниющие в воде, канаты, парусина, парашюты, аэростаты, скафандры, искусственная щетина, электроизоляция, приводные ремни, брезенты высокой прочности, пожарные рукава, шланги, транспортерные ленты, хирургические нити, различная спецодежда и т. п. Химические волокна используются для герметизации и уплотнения аппаратов, работающих в агрессивных условиях. В производстве различных типов химических волокон как из природных полимеров, так и из смол имеется много общего, хотя каждый метод одновременно обладает своими характер- [c.207]


    В учебнике большое внимание уделено высокомолекулярным соединениям и их растворам, хотя они формально и не относятся к коллоидам. Однако практическое значение высокополимеров, а также общность целого ряда свойств их растворов со свойствами коллоидов побудили включить эти системы в программу коллоидной химии. [c.3]

    На процесс геле- или студнеобразования существенное влияние оказывает температура. При повышении температуры интенсивность теплового движения коллоидных частиц и макромолекул высокополимера увеличивается, поэтому связь между ними ослабляется. В результате прочность пространственного сетчатого каркаса, образуемого коллоидными частицами или макромолекулами ВМС, уменьшается и гель переходит в золь. Таким образом, при повышении температуры увеличивается и минимальная концентрация дисперсной фазы или высокомолекулярного соединения [c.392]

    Все большее значение приобретают синтетические высокомолекулярные соединения или, как их иначе называют, синтетические высокополимеры. Это разнообразные материалы, обычно получаемые из доступного и дешевого сырья на их основе получают пластические массы (пластмассы) — сложные композиции, в которые вводят [c.499]

    Применение физико-химических методов определения моле кулярных весов связано с использованием растворов высокомолекулярных соединений. Свойства получающегося раствора высокомолекулярного соединения зависят от химической природы растворителя и высокополимера. В специфических растворителях образуются растворы, термодинамически устойчивые, Имеющие свойства истинных растворов. Это обусловливает воз можность применения методов, основанных на молекулярнокинетических св ойствах растворов высокополимерных соединений, поскольку число частиц в единице объема, несмотря на относительную крупность кинетической единицы по сравнению с обычными низкомолекулярными соединениями оказывается достаточно большим для количественного учета измеряемых в опыте величин. [c.280]

    Отметим, что конденсированное состояние для высокомолекулярных соединений (высокополимеров) — единственно возможное состояние. При нагревании длинные молекулы полимеров разрушаются раньше, чем разъединяются, т. е. раньше, чем переходят в газообразное состояние. Специфично для высокополимеров так называемое высокоэластичное состояние. Высокоэластичное состояние качественно можно описать как промежуточное между жидким и твердым. В этом состоянии каждая молекулярная цепь в целом неподвижна, как в твердом теле, а отдельные звенья цепи более или менее подвижны и могут менять взаимное расположение, как молекулы в низкомолекулярных жидкостях. [c.205]


    Для высокомолекулярных соединений характерным является самопроизвольное проникновение растворителя в сухой полимер, сопровождающееся часто значительным увеличением его объема с образованием студня. Этот процесс, предшествующий растворению высокополимера и растворителя, называется набуханием. В настоящее время процесс набухания рассматривается как процесс, аналогичный смешению жидкостей, протекающий односторонне вследствие значительной разницы в величине молекул высокополимера и растворителя. [c.280]

    Высокомолекулярные соединения, такие, как желатин, агар-агар, каучук, иначе относятся к растворителям не все смачивающие жидкости поглощаются данным высокополимером, а [c.295]

    Как уже указывалось в главе VI, стабилизация дисперсной системь с помощью структурированных механически прочных оболочек универсальна и придает дисперсной системе практически безграничную устойчивость. Тип образующейся концентрированной эмульсии зависит главным образом от природы эмульгатора. Выбор эмульгатора определяется следующим правилом эмульсии первого типа м/в) стабилизуются растворимыми в воде высокомолекулярными соединениями, например белками или воднорастворимыми гидрофильными мылами (оле-атом натрия и вообще мылами щелочных металлов). Эмульсии второго типа в/м) стабилизуются высокомолекулярными соединениями, растворимыми в углеводородах, например полиизобутиленом, олеофильными смолами и мылами с поливалентными катионами (олеатом кальция и др.), не растворимыми в воде, но растворимыми в углеводородах. Следовательно, эмульгатор должен иметь большее сродство с той жидкостью, которая является дисперсионной средой. Воднорастворимые мыла и воднорастворимые высокополимеры стабилизуют эмульсин масла в воде, в которых вода — дисперсионная среда. Каучук и другие высокополимеры, растворимые в углеводородах, стабилизуют эмульсии, в которых дисперсионная среда — масло (углеводородная жидкость). [c.143]

    Кроме высокомолекулярных соединений и мыл, эмульгаторами для эмульсий как первого, так и второго типа могут служить порошки, так называемые твердые эмульгаторы. Однако они менее эффективны, чем мыла и высокополимеры. Порошки, применяемые в качестве эмульгаторов, должны быть высокодисперсными (частицы меньше капель эмульсии по крайней мере на один порядок) и обязательно лучше смачиваться той жидкостью, которая должна стать дисперсионной средой в этом случае большая часть твердой частицы будет находиться с внешней, наружной, стороны капелек и предохранять их ог коалесценции при столкновениях. Если же частицы порошки лучше смачиваются жидкостью, являющейся дисперсной фазой, то большая часть каждой частицы окажется внутри капель, и такие эмульсии будут коалесцировать (рис. 55). [c.145]

    Молекулярный вес является важнейшей характеристикой высокомолекулярного соединения. От него зависят все основные свойства данного вещества эластичность, прочность, способность к набуханию и растворению. Обычные методы определения молекулярного веса органических соединений непригодны для высокополимеров. В связи с этим был разработан ряд совершенно новых методов определения их молекулярного веса. Эти методы разделяют на четыре группы  [c.204]

    Современная теория растворов высокомолекулярных соединений рассматривает набухание и растворение высокополимера как процесс смешения жидкостей. Последнее, как известно, заключается в том, что молекулы одной жидкости проникают в среду молекул другой. Молекулы низкомолекулярной жидкости проникают в погруженный в нее полимер. Это возможно потому, что цепочечные молекулы полимеров гибкие их звенья, изгибаясь, создают неплотную упаковку макромолекул. Молекулы низкомолекулярной жидкости, проникая в полимер, заполняют свободные пространства между молекулами. Маленькие молекулы растворителя начинают отодвигать звенья цепей полимера друг от друга, ослабляя межмолекулярное взаимодействие и разрыхляя полимер. Образующиеся щели заполняются новыми [c.211]

    Физические константы высокополимеров, например, молекулярный вес, температура плавления и другие, употребляются с учетом специфики этих веществ. Так, под молекулярным весом высокомолекулярных соединений понимают средний молекулярный вес смесей полимергомологов с различной длиной молекул. Большинство высокополимеров при повышении температуры постепенно размягчается и не имеет резкой точки перехода. Поэтому для них нельзя указать точки плавления, а лишь более или менее широкий интервал температуры, в котором происходит переход из твердого состояния в вязко-текучее. [c.180]

    Набухание и есть проникновение молекул низкомолекулярной жидкости в среду молекул высокомолекулярного соединения и связанное с этим раздвигание звеньев, а затем и цепей молекул высокополимера [c.212]

    Для растворов высокомолекулярных соединений формула Эйнштейна неприменима, так как макромолекулы имеют не шарообразную, а нитевидную форму и даже в разбавленных растворах взаимодействуют, образуя агрегаты, иммобилизующие жидкость. Измеренная в опыте вязкость растворов высокополимеров оказывается всегда значительно выше вычисленной теоретически по формуле Эйнштейна. Кроме того, для растворов высокополимеров не наблюдается линейного роста вязкости с ростом концентрации раствора она возрастает очень сильно благодаря образованию сетки из макромолекул. [c.221]


    Пластическими массами (пластмассами) называют обширную группу материалов, иногда представляющ,их сложные композиции, основой которых являются природные или синтетические высокомолекулярные соединения. Для пластмасс характерной является их способность при нагревании и под давлением формоваться в изделия и сохранять приобретенную форму. В настоящее время особое значение приобрели пластмассы на основе синтетических высокополимеров.  [c.74]

    Синтетические высокомолекулярные соединения называют также полимерными материалами, высокополимерами, или просто полимерами. Некоторые представители их обычно называют по исходным продуктам, из которых их получают к названию исходного вещества добавляют приставку поли-, например, полиэтилен, полипропилен, полибутадиен,полиизобутилен, поливинилацетат и т. п. Так как такие названия не дают представления о строении, свойствах и возможных химических превращениях, было сделано много попыток разделить все высокомолекулярные соединения на определенные классы и дать этим классам рациональные названия. [c.438]

    Для этого же периода характерно значительное увеличени е числа известных высокомолекулярных соединений к природным веществам добавились многочисленные и разнообразные представители синтетических высокополимеров, получивших важное значение в технике. [c.316]

    Такие высокомолекулярные соединения называют высокополимерными соединениями, высокополимерами или просто полимерами в отличие от мономеров — низкомолекулярных соединений, используемых для синтеза высокомолекулярных. [c.21]

    Высокомолекулярные соединения образуются в процессах полимеризации и поликонденсации. В первом случае возникают типичные высокополимерные соединения, во втором могут образовываться ВМС, составленные не из одинаковых группировок атомов и не являющиеся собственно полимерами, например белки. Поэтому понятие ВМС является более общим, включая, как частное, высокополимеры. Однако в современной литературе это различие в значительной степени стирается, и в дальнейшем термины полимер и ВМС будут использоваться как равнозначные. [c.324]

    Высокомолекулярные соединения представляют собой вещества, состоящие из огромных молекул с молекулярным весом порядка от десятков до сотен тысяч у синтетических полимеров, а у природных соединений — даже до миллионов. Величина молекулярного веса наряду со строением молекулы определяет важные в практическом отношении свойства высокополимеров — механическую прочность, эластичность, способность к набуханию и растворению и др. поэтому методике определения молекулярного веса уделяется большое внимание. [c.69]

    Высокомолекулярные соединения, или, как их часто называют, полимеры или высокополимеры (от греческого слова поли — много), по свойствам и строению весьма разнообразны. Однако они имеют и ряд общих свойств, вследствие чего их обычно выделяют в особый класс. [c.365]

    Коршак сделал попытку составить систему классификации высокомолекулярных соединений, основой которой является структура самой цепи, чтб в случае высокополимеров эквивалентно понятию структуры основного повторяющегося звена, из которого составляется вся цепь макромолекулы. [c.182]

    Современная полимерная химия представляет собой область науки, впитавшую в себя многие положения органической и неорганической химии, физической и коллоидной химии, физики твердого тела и других научных дисциплин. Это объясняется многообразием химических структур высокомолекулярных соединений и процессов их образования, спецификой свойств полимеров и приводит к тому, что интерес ко многим, особенно промышленным полимерам, не ослабевает уже на протяжении более 50 лет. Вместе с тем необходимо отметить, что анализ полимеров, часто плохо растворимых и не плавящихся до начала термического разложения, сопряжен во многих случаях со значительными экспериментальными трудностями. Сказанное касается и изучения процессов образования высокополимеров. При этом, хотя задачу синтеза новых полимеров нельзя считать более простой по сравнению с их анализом, все же, вероятно, в идеале соотношение между химиками, занимающимися исследованием полимеров, и химиками-синтетика-ми должно быть существенно больше единицы. [c.5]

    Здесь термин строение , как и по отношению к другим высокомолекулярным соединениям, следует понимать в том смысле, который ему придают в химии высокомолекулярных веществ. Поскольку любое высокомолекулярное вещество представляет собой смесь полимергомологов, то под строением в данном случае понимают не структуру какой-то определенной молекулы, а строение усредненной молекулы полимера и, в первую очередь, если известно строение мономера, основной тип связи мономерных единиц между собой. Структура возникающих в результате ассоциации полимерных цепей агрегатов представляет собою следующую ступень понятия и строение высокополимера . В этом случае рассматривается уже не расположение ковалентных связей и атомов, а взаимное расположение полимерных цепей в пространстве, их конформация и возникающие между ними межмолекулярные силы. [c.246]

    Еще в начале XX в. высокомолекулярные вещества (смолы, каучуки и т. д.) рассматривали как вещества, состоящие из обычных небольших молекул, образующих в растворах большие агрегаты, наподобие коагулятов. Эта точка зрения была полностью отвергнута в 20-х гг. немецким химиком Г. Штаудингером Еще в 1922 г. он высказал мысль, что высокомолекулярные соединения состоят из больших, многоатомных молекул, названных им макромолекулами. В. 1926 г. на основе изучения свойств таких макромолекул высокополимеров (полистирол и др.) Г. Штаудингер пришел к выводу, что их скелет составлен из углеродных цепей, состоящих из множества углеродных атомов. В дальнейшем он ввел представление и о разветвленном цепном строении высокомолекулярных веществ. [c.257]

    По своему происхождению все волокна могут быть подразделены на природные и химические. Последние в свою очередь делятся на и с к у с с т в е н и ы е, изготовляемые из высокомолекулярных соединений, находящихся в природе в готовом виде (целлюлоза, казеин и др.), и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров. Для удобства дальнейшего рассмотрения приведем примерную классификацию волокон по их происхождению и химическому составу (рис. 173). [c.556]

    Высокомолекулярными называют такие соединения, у которых молекулы (макромолекулы) состоят из огромного числа атомов — нескольких тысяч, десятков тысяч и более. Молекулы высокомолекулярных соединений чаще всего построены путем многократного повторения тех или иных определенных структурных единиц. Такие соединения и называют высокополимерами или чаще просто полимерами. [c.551]

    Однако наиболее четкое представление о полимергомологическом строении высокомолекулярных соединений было сформулировано в 1929 г. Штаудингером [9], убедительно показавшим, что все высокополимеры представляют собой смеси полимергомологов . [c.7]

    Рассмотрение -высокополимеров будет проведено по отдельным группам, в которые объединены соединения одинаковой химической природы в соответствии с предложенной нами ранее химической классификацией высокомолекулярных соединений, в основу которой положены строение основной цепи макромолекулы, характер и количество заместителей [c.179]

    ВЫСОКОПОЛИМЕРЫ м мн. см. высокомолекулярные СОЕДИНЕНИЯ. [c.85]

    Полимеры, образованные сотнями и тысячами мономерных люле-кул, представляют собой высокомолекулярные соединения (высокополимеры)-, многие из них находят широкое применение в производстве пластических масс. [c.73]

    В предлагаемой монографии в этих аспектах рассмотрены основные типы газонаполненных высокомолекулярных соединений (высокополимеров). Специфический же круг вопросов, относящихся к пенопластам на основе реакционноспособпых олигомеров и к специальным типам упрочненных газонаполненных пластмасс (интегральным, синтактным и др.), изложен нами в двух других монографиях Пенополимеры па основе реакционноспособных олигомеров (М., Химия , 1978) и Упрочненные газонаполпенпые пластмассы (М., Химия , 1980). [c.3]

    В настоящее время накоплен достаточно большой багаж количественных данных, позволяющих оценивать характеристики и свойства высокопо/[имеров, а также описывать процессы, связанные с образованием макромолекул и превращением их в другие соединения. Основные закономерности химии высокомолекулярных соединений изложены в ряде монографий и учебников. Однако для свободного владения теоретическими основами химии ВМС недостаточно пассивного усвоения уравнений и формул. Необходимы практические навыки применения полученных, знаний для решения конкретных задач. Практика преподавания курса Химия и технология высокомолекулярных соединений в Горьковском политехническом институте им. А, А. Жданова показала, что двоение студентами материала по химии высокополимеров значительно улучшается, если лекции сопровождаются не только лабораторным практикумом, но и решением задач и выполнением расчетных курсовых работ. Исходя из опыта нашей работы, мы считаем, что решение задач должно быть обязательной составной частью курса химии высокомолекулярных соединений. Но пока, к сожалению, ни в нашей стране, ни за рубежом нет учебных пособий с достаточным количеством задач по всем разделам названной дисциплины. Лишь в пособие А. А. Геллер и Б. Э. Геллера (Практическое руководство по физико-химии волокнообразующих полимеров. Л., Химия, 1972) и монографию Дж. Оудиана (Основы химии полимеров. М., Мир, 1974) включено наряду с контрольными вопросами небольшое число расчетных задач. [c.3]

    Часто встречающиеся в практике полихлорвинил, бакелит, капрон, найлон могут служить примером синтетических высокомолекулярных соединений. Макромолекулы построены путем многократного повторения одинаковых структурных единиц, называемых химическими звеньями, связанных между собой ковалентной связью. Поэтому их называют высокополимерами (или полимерами) от греческих слов тли — множество и мерос — часть. Эта особенность позволяет записывать эмпирические формулы высокомолекулярных соединений в кратком виде. Например, формула поливинилхлорида записывается как (С2НзС1) . [c.272]

    Электронный. микроскоп неоценим при изучении. микробов, фильтрующихся вирусов, катализаторов, ускоряющих различные реакции, разнообразных коллоидных систем и высокомолекулярных соединений. С его помощью Писаренко и Штарх обнаружили в некоторых высокополимерах (каучу-ках, капроне) микрохрящи , ухудшающие качество полимеров. Это дает возможность лучше контролировать процессы производства. [c.46]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    Почти все перечисленные вьппе загущающие ирнсадки обладают одним недостатком, свойственным большей части высокомолекулярных соединений под влиянием больших механических воздействий они способны к деструкции, что в процессе эксплуатации часто приводит к понижению вязкостц тех композиций, в которых эти высокополимеры играют роль загустителей. В некоторых случаях это ограничивает иримепение высокополимерных соединений для загущения смазочных масел. Однако лучшие загущающие ирисадки в настоящее время неизвестны и названные высокополимерные соединения находят широкое применение на практике. [c.275]

    Ограничение этого метода заключается в необходимости иметь химически инертный, невосстанавливающийся (в пределах используемого интервала потенциалов) растворитель для полимера и фонового электролита. Сильно сшитые высокомолекулярные соединения из-за нерастворимости не подходят для анализов такого рода. Опубликованы работы [130] по полярографической идентификации таких высокомолекулярных веществ, как альбумины, белки, крахмал, желатина, полисахариды, каучук и нитроцеллюлоза, причем большинство работ посвящено количественным аспектам. Краткий обзор по применению полярографии в промышленности высокополимеров сделали Укида и Комипами [267]. [c.366]

    Усилия огромной армии ученых, работающих в области макромолеку-лярной химии, привели к получению обильного научного материала. Для характеристики объема исследований по их результатам, находящим отражение на страницах научной печати, достаточно сказать, что за последнее время ежегодно публикуется свыше 20 тысяч научных стате11 и патентов, относящихся только к области синтетических макромолекулярных соединений. Если к этому добавить, вероятно, столь же большое количество материала, относящегося к области природных полимеров, т. е. целлюлозы, крахмала, белков и других веществ, то каждый ясно представит себе огромный объем материала и трудности его отбора. Поэтому мы старались выбрать лишь материал, относящийся главным образом к области синтеза высокомолекулярных соединений, которая является ведущей в полимерной химии. При этом кратко рассмотрели работы, относящиеся к производству высокополимеров, и дали динамику его роста по годам и затем рассмотрели прогресс в области методов получения высорсомолекулярных соединений. С весьма краткой характеристикой описаны новые высокомолекулярные соединения, синтезированные в последнее время п представляющие практический интерес. Количество таких соединенп весьма велико, и естественно, мы были вынуждены упомянуть только те из них, для которых уже известны области применения или достаточно вероятна возможность их использования в различных областях современной техники, а также имеющие принципиальное значение для развития методов синтеза и теории химии полимеров. [c.3]

    Химия высокомолекулярных соединений, особенно синтетическая хпмия высокополимеров. является в настоящее время одной из наиболее интенсивно развиваюшихся областей современной химической науки. [c.24]

    Следует отметить, что если в области органических высокополимеров преобладают гомоцепные (карбоцепные) полимеры, то в области неорганических полимеров преобладают гетероцепные высокомолекулярные соединения. Элементоорганические полимеры с цепями из неорганических элементов, обрамленных различными органическими группами, как, например, силиконовые полимеры, а также содержащие различные элементы, связанные с карбоцепцыми полимерами, и многие другие выделены нами в отдельную самостоятельную группу элементоорганических полимеров и рассмотрены ранее (см. главу 4). [c.323]


Смотреть страницы где упоминается термин Высокомолекулярные соединения высокополимеры : [c.288]    [c.392]    [c.258]    [c.166]   
Курс органической химии Издание 4 (1985) -- [ c.9 , c.71 , c.478 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.803 , c.805 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Высокомолекулярные соединения высокополимеры также Полимеры

Высокополимеры

Основные понятия химии высокомолекулярных соединений Свойства и получение высокополимеров



© 2025 chem21.info Реклама на сайте