Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эндотермические процессы реакции

    Как уже было указано выше, термический крекинг является преимущественно эндотермическим процессом. Реакции, происходящие в зоне крекинга, представляют собой комбинацию реакций разложения и конденсации. Поскольку преобладают реакции разложения, сопровождающиеся поглощением тепла, то они перекрывают экзотермический эффект реакции конденсации. Теплота крекинг-процесса при стандартных режимах составляет около 200 ккал на килограмм образованного газа и бензина. Теплота реакции может быть определена достаточно точно на основании следующего уравнения  [c.41]


    В шахтных печах устойчивее футеровка они проще по конструкции и имеют большую интенсивность рабочего пространства. В них теплообмен осуществлен по принципу противотока холодная шихта опускается вни.з, постепенно нагреваясь, горячие газы между кусками шихты движутся вверх, охлаждаясь. Это увеличивает использование тепла дымовых газов на нагревание шихты и эндотермические процессы, идущие в печи. Здесь происходит непрерывный процесс, и это облегчает управление им с технологической стороны и создает ряд удобств в выполнении производственных операций. Процесс легко регулируется, по производительности в широких пределах изменением количества подаваемого воздуха для горения топлива и реакций окисления. Основные преимущества этих печей следующие  [c.99]

    Эндотермический процесс (реакция) - процесс, сопровождающийся поглощением теплоты. [c.13]

    Нормы расхода тепла и энергии устанавливаются на основании тепловых и энергетических балансов. При этом в приходной части теплового баланса находят отражение теплота, развиваемая экзотермическими химическими реакциями физическая теплота, приносимая нагретыми реагирующими веществами теплота, вносимая в процесс извне. В расходную часть входят теплота, поглощаемая в эндотермических процессах физическая теплота, уносимая продуктами реакции потери теплоты в окружающую среду. [c.99]

    Химические уравнения, в которых указан тепловой эффект реакции при постоянных давлении и температуре (АЯ процесса), называются термохимическими уравнениями. Тепловой эффект АЯ считают положительным для эндотермических процессов и отрицательным для экзотермических. Значение АЯ реакции (в кДж) указывают после уравнения реакции (через точку с запятой). Значение АЯ относят к числу молей веществ, участвующих в реакции, которое указывают стехиометрическими коэффициентами (часто они бывают дробными). Кроме того, в термохимических уравнениях отмечают состояние веществ (к) — кристаллическое, [c.163]

    Теплоту химической реакции, проводимой при постоянном давлении (или хотя бы при условии, что окончательное давление совпадает с исходным), принято называть изменением энтальпии реагирующей системы, АН (читается дельта-аш ). Как мы узнаем из гл. 15, изменение энергии АЕ соответствует теплоте реакции, проводимой при постоянном объеме, например в калориметрической бомбе, показанной на рис. 2-4. Энтальпию можно рассматривать как энергию, в которую внесена поправка, учитывающая работу, которую могли совершить реагенты, отталкивая атмосферу, если они расширялись во время реакции. Различие между Д и АН невелико, но очень важно, хотя сейчас мы еще не будем уделять ему внимания. Если в процессе реакции выделяется теплота, то энтальпия реагирующей системы убывает в этом случае изменение энтальпии АН отрицательно. Такие реакции называются экзотермическими. Реакции, протекающие с поглощением теплоты, называются эндотермическими в таких реакциях происходит возрастание энтальпии реакционной смеси. Для реакции разложения пероксида водорода можно записать  [c.89]


    Эти выводы иллюстрирует рис. 2.11. Рис. 2.11а отвечает эндотермическому процессу (равновесие смещается в сторону продуктов реакции) рис. 2.116 соответствует экзотермической реакции (нагревание приводит к обратному результату). [c.199]

    Пиролиз является эндотермическим процессом, требующим постоянного подвода тепла, что неизбежно увеличивает продолжительность процесса и способствует появлению вторичных реакций. [c.17]

    Без теплообменных элементов эффективно работают прежде всего аппараты, в которых протекают реакции с небольшим тепловым эффектом или же перерабатываются разбавленные газы. В последнем случае даже при большом тепловом эффекте реакции температура меняется незначительно соответственно уравнению адиабаты (П1.42) и (111.43). Подогрев газа до температуры зажигания катализатора (нри экзотермических процессах), или более высокой при эндотермических, происходит в выносных теплообменниках, подогревателях, печах. Без теплообменных элементов могут работать и однослойные аппараты с большим тепловым эффектом процесса. В этом случае при эндотермических процессах необходимая температура достигается за счет предварительного нагревания газа и, в некоторых случаях, катализатора в экзотермических процессах газ поступает при температурах ниже температуры зажигания катализатора и его начальная температура определяется из теплового баланса или уравнения адиабаты по заданной оптимальной температуре в слое. [c.110]

    Термический крекинг для производства бензина может быть определен как ряд реакций разложения и конденсации, имеющих место при высоких температурах. Реакции разложения являются обычно эндотермическими, а реакции конденсации — экзотермическими. Так как реакции разложения обычно преобладают, то суммарный процесс проходит с некоторым поглощением тепла. [c.29]

    Реакции крекинга представляют собой разрывы С—С-связей, которым термодинамически благоприятствуют высокие температуры (эндотермические процессы), и крекинг можно определить как реакцию, обратную алкилированию или полимеризации. [c.123]

    При этих допущениях математическую модель рассматриваемого процесса можно представить системой уравнений материального и теплового балансов для элементарного объема трубчатого реакторного устройства. С этой целью выделим элементарный объем трубы, заполненный катализатором, на расстоянии от I до / + (И. Обозначим массовый поток кислородсодержащего газа с плотностью у г и теплоемкостью через Fo, текущую концентрацию кислорода в нем — С, содержание кокса на катализаторе — р, насыпную плотность катализатора — у, теплоемкость его —с,,, долю свободного объема в слое — е, сечение трубы — 8, температуру процесса — Т, скорость реакции, измеренную по кислороду и отнесенную к единице реакционного объема — ю, соотношение скоростей реакции по кислороду и коксу — Р, тепловой эффект реакции (положителен для эндотермического процесса) — д, коэффициент теплопередачи через стенку — к- , поверхность трубы на единицу длины ее слоя — 5 01 температуру наружного воздуха — Гн. [c.306]

    Химические процессы протекают либо с выделением, либо с поглощением тепла первые называются экзотермическими, вторые — эндотермическими. Так, реакция [c.9]

    Количество выделенного (или поглощенного) тепла называют тепловым эффектом процесса. Чтобы этой величине придать полную определенность, надо условиться об ее знаке, выбрать единицы измерения, установить, к какому количеству вещества ее следует относить, и договориться о режиме протекания процесса. Решение вопроса о знаке и единицах измерения не вызывает затруднений, хотя в отношении первого могут быть два, а в отношении второго — очень много вариантов. Примем положитель-нь1 тепловой эффект эндотермических процессов условимся относить тепловой эффект к 1 моль вещества (обычно продукта реакции) и выражать его в килокалориях. [c.9]

    Выводы, к которым мы пришли, можно показать на графике (рис. 25). Рис. 25, а отвечает эндотермическому процессу (равновесие смещается в сторону продуктов реакции), рис. 25, б соответствует экзотермической реакции (нагревание привело бы к противоположному результату). [c.72]

    При перегреве в глубине зерна скорость реакции здесь возрастает и степень использования внутренней поверхности т) Сказывается больше единицы (для эндотермических процессов данная величина соответственно снижается). Рис. ХУ-З иллюстрирует результаты [c.475]

    При интенсивной циркуляции подвод теплоты в зону реакции (в эндотермических процессах) происходит за счет теплоемкости катализатора, нагретого в регенераторе при выжигании кокса. (Например, каталитический крекинг системы Термофор .) При слабой циркуляции подвод теплоты осуществляется нагреванием смеси в промежуточных теплообменниках или печах между последовательно расположенными зонами реакции (например, в процессах риформинга с движущимся слоем катализатора). [c.131]


    В последние годы при разработке химико-технологических процессов в качестве теплоносителя достаточно часто применяется электромагнитное излучение сверхвысокочастотного диапазона. В Стерлитамакском филиале УГНТУ в течение ряда лет ведутся исследования, направленные на создание новых химических технологий с такими реакционными устройствами [1, 2]. Возникает необходимость в создании методов расчета, адекватно описывающих термодинамические процессы, протекающие в подобных реакционных устройствах при гетерофазных эндотермических каталитических реакциях. [c.33]

    Повышение температуры эндотермического процесса вызывает монотонное возрастание степени превращения по затухающей кривой (рис. 41). Однако при повышении температуры могут возникать побочные реакции поэтому выход целевого продукта, например, бутадиена при каталитическом превращении этилового спирта или бензина в процессе каталитического крекинга, может проходить через максимум, хотя основная реакция эндотермическая. [c.75]

    Эндотермические процессы характеризуются монотонным возрастанием выхода продукта при повышении температуры (рис. 9). Однако при этом могут возникнуть побочные реакции поэтому выход целевого продукта (например, бутадиена при каталитическом [c.42]

    Уравнение (77.3) полезно при вычислении теплового эффекта реакции [АгЯ°(Т)1 графическим путем, если температурную зависимость константы равновесия представить в координатах 1пАГ° — 1/Т. Уравнение (77.2) называется уравнением Вант-Гоффа или уравнением изобары реакции (процесс осуществляется при Р = onst). Согласно уравнению (77.2) влияние температуры на константу равновесия обусловливается знаксгм теплового эс екта. Если АгЯ°(Г)> О (эндотермический процесс), то первая производная положительна, [c.256]

    Реакторы с пневмотранспортом катализатора применяются для осуществления быстро протекающих реакций с интенсивным коксоотложением. Хорошая теплоотдача к поверхности, помещенной в слой, позволяет проводить в таких аппаратах сильно экзотермические процессы высокая скорость циркуляции частиц облегчает подвод теплоты в эндотермических процессах за счет теплоемкости регенерированного катализатора. [c.131]

    Тепло расходуется для осуществления эндотермического процесса конверсии. Одновременно с конверсией СН и других углеводородов идет окисление СО водяным паром с выделением тепла. Суммарный тепловой эффект протекающих при конверсии реакций определяем в соответствии с законом Гесса, по которому [c.193]

    Эндотермические процессы. Активированные молекулы могут возникать и нри эндотермических процессах. Реакции атомов иода с 1,2-дизамещенными олефинами [14, 15] с образованием иодсо-держащих радикалов эндотермичны примерно на 9 ккал/молъ. Образующиеся радикалы обладают энергие , достаточной для обратной реакции распада при этом в результате распада может произойти геометрическая изомеризация олефина. [c.64]

    При избытке водяного пара порядка 10—15 модой на 1 моль бутена последний дегидрируется примерно па 25%. Предварительно пар перегревается до 700°, бутеновая смесь до 530°. Оба газа смешиваются и в течение около 0,2 сек. пропускаются над катализатором, имеющ,им форму таблеток и находяш,нмся в трубках из легированной стали. Температура дегидрирования на входе в печь около 670°. Разница между температурами на входе и выходе равна примерно 25°, что объясняется эндотермическим характером реакции. В некоторых установках, чтобы обеспечить возможность непрерывного ведения процесса, пмеется два реактора, из которых в одном все время происходит регенерация. Последнюю проводят нрекраш ая подачу бутена в реактор. Перегретый водяной пар реагирует с высокоактивным коксом с образованием водяного газа. [c.86]

    Здесь В скобках указаны интервалы температур, благоприятные для протекания реакций. Эти и другие эндотермические.процессы, идущие при понышенной температуре, показали, что принцип Бертло имеет ограниченный характер и не является всеобъемлющим. Известно также, что ряд самопроизвольно протекающих экзотермических реакций, например [c.78]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Дегидрохлорированне —. эндотермической процесс. Дегидрохлорирование хлористого этила, нанример, требует 15 300 кал и AS° реакции составляет - -31,3 кал1молъ град. AF° становится отрицательным для всех температур выше 250°, поэтому эта реакция имеет значение только при термическом хлорировании. [c.60]

    Равнопесие гидролиза может быть смеш,ено также изменением температуры. Поскольку обратный гидролизу процесс — реакция нейтрализации — протекает с выделением теплоты, то реакция гидролиза представляет собой эндотермический процесс. Поэтому повышение температуры ведет к усилению гидролиза, а понижение температуры — к его ослаблению. [c.153]

    Однако попытка объяснить направленность химических процес сов только стремлением к минимуму внутренней энергии приводит к противоречиям с фактами. Так, уже при обычных температурах самопроизвольно протекают эндотермические процессы растворения многих солей и некоторые эндотермические химические реак ции. С повышением температуры все большее чпсло реакций начинает самопроизвольно протекать в направлении эндотермического процесса примерами так гх реакций могут служить упомянутое выше разложение воды или протекающий при высоких теяиерагу-ра. сиитез оксида азота(П)  [c.191]

    Экзотермическим или эндотермическим процессом является превращение минерала рутила, ТЮз, в TI3O5 при атмосферном давлении Чему равна теплота этой реакции при 298 К Составьте ее полное уравнение. [c.111]

    Это одновременно показывает, что при повышении температуры всегда сильнее увеличивается скорость эндотермического направления реакции, так как энергия активатги его больше. Этим и объясняется то, что с повышением температуры равновесие всегда смещается в направлении эндотермического процесса и тем в большей степени, чем выше тепловой эффект, т. е. чем больше разница в энергиях активации прямой н обратной реакций.  [c.478]

    Рассчитать температуру и равновесный выход продуктов реакции, при которых возможна компенсация теплоты эндотермического процесса (I) теплотой экзотермического процесса (П). Оба процесса проводятся в идеальной газовой смеси веществ. В реактор загружено эквимолекулярное количество спирта и бензола, равно п° молей. Равновесное превращение спирта —X, СбНб—у. [c.263]

    Для реакций в конденсированной фазе АУ л О и QpЛi Qv. Химические реакции чаще проводятся при постоянном давлении, чем при постоянном объеме. В связи с этим при рассмотрении различных термодинамических закономерностей и при проведении расчетов обычно используется тепловой эффект при постоянном давлении Qp, Тепловой эффект считают положительным для эндотермических процессов и отрицательным для экзотермических процессов. Условимся также записывать тепловой эффект реакции при постоянном давлении символом А Н. [c.207]

    Окислительный пиролиз, при котором экзотермиче-скгя реакция горения углеводородов и эндотермический процесс пи[ олиза совмещены в одном аппарате. [c.82]

    Реакция окисления высокоэкзотермична и, поскольку последующая обработка полученного газа, например метанизация его, также экзотермичн1а, эффективного способа использования всей тепловой энергии, выделившейся при частичном окислении, нет. Единственным решением этой дилеммы могло бы быть комбинирование цикла частичного окисления с каким-нибудь другим, эндотермическим процессом газификации, например паровым риформингом. Этот способ нашел практическое применение в промышленных установках суммарную реакцию в газогенераторе частичного окисления можно записать как [c.94]

    Серии температурных профилей, приведенные на рис. 6, указывают на наличие эндотермической реакции, за которой быстро следует экзотермическая реакция. Этими реакциями могут быть образование окиси углерода и водорода и их последующая рекомбинация с образованием метана. Однако возможны и другие интерпретации. Добавка водорода, например, вызывает сокращение или даже полное исключение области снижения температуры, а окончательная температура внизу слоя поднимается приблизительно на 15°С. Рециркуляция выходящей газовой смеси, т. е. метана, двуокиси углерода и водорода а вход реактора с одновременным снижением подачи пара позволяет снизить температуру на входе с 450 до 350°С и полностью изменить характер суммарной реакции. При этом исключается падение температуры на входе, вероятно, в результате того, что экзотермическая гидрогенизация исходного продукта компенсируется эндотермическими процессами риформинга. Общее повышение температуры в варианте каталитической гидрогазифика- [c.103]

    Очевидно, что при увеличении концентрации одного из составляющих систему веществ ускоряется реакция, приводящая к усиленному расходу нменно этого венг.ества и, следовательно, равновесие смещается в сторону уменьшения его концентрации. Прн новышеннн температуры ускоряются обе обратимые реакции, но в большей мере ускоряется реакция эндотермическая (температурный коэффициент скорости эндотермической реакции всегда больше, чем экзотермической) и, следовательно, равновесие смещается в направлении эндотермического процесса. Наоборот, прн понижении температуры замедляются обе обратимые реакции, но в большей мере замедляется реакция эндогермическая и, следовательно, равновесие смещается в сторону экзотермического процесса. [c.103]

    При протекании экзотермического каталитического процесса перенос тепла от зерен катализатора в поток газов в общем случае включает в себя, во-первых, распространение тепла внутри зерна, во-вторых, конвективную и радиационную теплоотдачу от наружной поверхнрсти зерен потоку газов. При эндотермическом процессе направление теплового потока обратное — от газа к зернам катализатора. Так как объемная теплоемкость зерен катализатора на два-три порядка выше теплоемкости газа, то поглощение тепла зернами во столько же раз больше теплового потока с продуктами реакции в основно газ. Распространение тепла в зернах малой величины [1] можно оценивать с помощью уравнения [c.43]


Смотреть страницы где упоминается термин Эндотермические процессы реакции : [c.178]    [c.203]    [c.78]    [c.125]    [c.221]    [c.71]    [c.38]    [c.83]    [c.49]   
Оборудование производств Издание 2 (1974) -- [ c.72 , c.80 , c.86 , c.88 , c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс эндотермические

Реакции эндотермические



© 2025 chem21.info Реклама на сайте