Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий электронная структура

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]


    В табл. 60 схематически показана электронная структура атомов рутения, родия, палладия, осмия, иридия и платины. [c.615]

    Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых элементов отличаются значительным разнообразием вследствие возможности проскока и5-электронов на (п—1) -орбиталь. В силу малого различия энергий соответствующих орбиталей относительные устойчивости разных электронных конфигураций сравнимы. Легкость взаимных переходов электронов между различными уровнями обеспечивает разнообразие валентных состояний и степеней окисления. Поэтому нередко проскоки -электронов не связаны с достижением стабильной ( -конфигурации, что характерно для элементов подгруппы меди. Нормальное заполнение валентных орбиталей (без проскоков электрона) характерно лишь для осмия и иридия, электронные конфигурации которых аналогичны таковым для железа и кобальта. Палладий — единственный элемент в периодической системе, который в нормальном состоянии не имеет электронов на з-оболочке. У платины стабильна -конфигурация, что также не наблюдается у других элементов периодической системы. Некоторые характеристики элементов и простых веществ семейства платиноидов приведены ниже. [c.416]

    Электронные структуры железа, кобальта, никеля и платиновых металлов указаны в табл. 19.1 эти структуры соответствуют энергетическим уровням, приведенным на рис. 5.6. Следует отметить, что каждый из рассматриваемых атомов имеет два внешних электрона в случае железа, кобальта и никеля это электроны на 45-орбитали, для рутения, родия и палладия — на 5 -орбитали для осмия, иридия и платины — на б5-орбитали. Следующая внутренняя оболочка у этих элементов не завершена Зй-орбиталь (или соответственно 4d- и 5d- [c.543]

    Электронная структура атома осмия К -L-M-N -Ъз Ър Ъй Электронная структура атома осмия и катиона для bd- и 6s-орбиталсй  [c.629]

    Микроскопическое изучение вулканизационной сетки. Вулка-низат подвергают набуханию до равновесного состояния в стироле в присутствии пероксида, ингибитора и небольшого количества пластификатора (фталата). После полимеризации стирола из полученного композита вырезают ультратонкие образцы, которые обрабатывают тетраоксидом осмия и рассматривают с помощью трансмиссионной электронной микроскопии (ТЭМ). При достаточно большом увеличении можно увидеть сетчатую структуру, темные области которой соответствуют цепям сетки или их пучкам, однако на определенной стадии в процессе фазового разделения образуется тройная система, состоящая из эластомера, полистирола и сополимеризованного стирола. При этом наблюдается линейная корреляция между размерами ячеек и молекулярной массой цепей сетки М что позволяет оценивать плотность цепей сетки для отдельных фаз вулканизатов смесей, причем результаты хорошо согласуются с данными ЯМР-спектроскопии набухших вулканизатов. [c.517]


    Теперь можно вернуться к проблеме локализации различных блоков в цилиндрических и сферических структурах. Электронная микроскопия применялась в первое время к этой проблеме в случае упорядоченных сополимеров С-Б [29, 30], где диеновый блок окрашивался тетроксидом осмия и на микрофотографиях оказывался черным. В работах [29, 30] показано, что в зависимости от состава сополимеры С-Б и Б-С-Б обнаруживают два типа цилиндрических гексагональных структур один — ПБ цилиндры в поли-стирольной матрице для сополимеров, содержащих 20—35% ПБ [c.213]

    Ламеллярный характер структуры продемонстрирован малоугловой дифракцией рентгеновских лучей (в центре рентгенограммы получается система из 3—6 четких линий, соответствующих межплоскостным брэгговским расстояниям в отнощении 1, 2, 3, 4, 5,...), а также с помощью электронного микроскопа. На рис. 26 приведена электронная микрофотография, полученная для сополимеров Б-Г и Б-КК. На микрофотографиях виден ряд параллельных чередующихся черных и белых полос белые полосы соответствуют полипептидным блокам, а черные — полибутадиеновым блокам, окрашенным осмием. [c.244]

    Из 103 элементов только у 47 пока не обнаружено полиморфных превращений (при Р= 1 атм), причем структура 11 элементов еще не исследована. Полиморфные превращения наблюдаются и у металлов главных подгрупп, например у лития, натрия, кальция, стронция, бария, таллия и олова. Они присущи многим неметаллам с заполняющимися р-оболочками, например фосфору, мышьяку, сурьме, сере, селену, теллуру и полонию. Они свойственны металлам с достраивающимися d-оболочками — металлам подгрупп скандия и титана, а также марганцу, железу и кобальту. Наконец, все элементы с заполняющимися 4/- и 5/-оболочками — лантаноиды (кроме европия) и актиноиды — являются полиморфными металлами. Не обнаруживают полиморфизма некоторые элементы с заполненными внешними оболочками, а именно инертные газы, элементы с заполненными -оболочками, над которыми находятся один или два электрона — медь, серебро, золото и цинк, кадмий, ртуть. Не имеют модификаций металлы VIH группы с почти заполненными -оболочками — никель, палладий, родий, иридий, рутений, осмий, кроме н<елеза и кобальта, а также переходные металлы V, VI и VII групп, кроме марганца мономорфны галогены. [c.196]

    Структура атомов элементов, включающих 32-электронный слой з-, р , й , / ), который сформировался у лантаноидов (л=4, 7= ==58—71),— лантаноидное сжатие (уменьшение радиуса атомов) — от лантаноидов распространяется на последующие элементы, что сказывается на свойствах элементов с 2>71 (начиная с НГ). Например, плотность металлов от НГ до Аи — Hg примерно вдвое больше плотности -металлов пятого периода (2>39, начиная с 2г). Это закономерно, так как атомные массы -металлов, расположенных после лантаноидов, приблизительно вдвое больше атомных масс их аналогов в пятом периоде, а атомные радиусы (у 2г 0,160 нм, у НГ 0,159 нм и т. д.), и, следовательно, атомные объемы близки. Максимальную плотность имеет осмий (22,5 г/см . Химические свойства -элементов пятого и шестого периодов сходны. Так, 2г по свойствам ближе к Н5, чем к Т1 МЬ ближе к Та, чем к V Мо — к Ш, чемкСг Тс—к Ке, чем к Мп Ru— кОз, чем к Ре НЬ — к 1г, чем к Со Рс1 — к Р1, чем к N1 Ag — к Аи, чем к Си С(1 — к Hg, чем к 2п, [c.89]

    К металлам относят вещества, которые обладают рядом характерных свойств хорошей электро- и теплопроводностью и отражательной способностью к световому излучению (блеск и непрозрачность), отрицательным температурным коэффициентом электропроводности, повышенной пластичностью (ковкость). Данные свойства металлов обусловлены наличием подвижных электронов, которые постоянно перемещаются от одного атома к другому. Вследствие такого обмена в металлической структуре всегда имеется некоторое количество свободных электронов, т. е. не принадлежащих в данный момент каким-либо определенным атомам. Чрезвычайно малые размеры электронов позволяют им свободно перемещаться по всему металлическому кристаллу и придавать металлам характерные свойства. Слабой связью валентных электронов с ядром атома объясняются и многие свойства металлов, проявляющиеся при химических реакциях образование положительно заряженных ионов-катионов, образование основных окислов и др. Металлы с хорошей электропроводностью одновременно обладают высокой теплопроводностью (рис. 105). Наибольшей электропроводностью обладают металлы серебро, медь, золото, алюминий. Медь и алюминий широко используются для изготовления электрических проводов. По твердости металлы располагаются в ряд, приведенный на рис. 106. По плотности все металлы условно делят на две группы легкие, плотность которых не более 5 г см , и тяжелые. Плотность, температуры плавления и кипения некоторых металлов указаны в табл. 18. Наиболее тугоплавким металлом является осмий, наиболее легкоплавким — ртуть. [c.266]

    К решению вопроса о структуре бактериального ядра удалось приблизиться только благодаря электронной микроскопии ультратонких срезов через бактериальную клетку. Для получения оптимальной картины нативной тонкой структуры клеточного ядра решающее значение имела надлежащая фиксация (с помощью четырехокиси осмия, уранил-ацетата или фосфорновольфрамовой кислоты) в совершенно определенных условиях. Область ядра (нуклеоплазма) в бактериальной клетке равномерно заполнена очень тонкими нитями (рис. 2.5). В электронном микроскопе она выглядит менее плотной, чем окружающая цитоплазма, содержащая рибосомы. Какой-либо мембранной структуры, отделяющей область ядра от цитоплазмы, выявить не удалось. [c.31]


    Конфигурации 56—59 и 62—68 не дают однозначной характеристики структур, поскольку существует возможность изомерии, основанная на деталях стереохимии каждого атома осмия. Даже в тех случаях, когда симметричные по форме мультиплеты в спектре ЯМР говорят о магнитной эквивалентности двух связей с атомами фосфора, лиганды не обязательно химически эквивалентны вследствие возможности эффективного взаимодействия. Атомы металла в этих структурах будут иметь электронную конфигурацию инертного газа, если представить себе простые связи металл—металл в тех случаях, когда линии проведены между металлами, и трехцентровые двухэлектронные связи, образованные мостиковыми водородами. [c.169]

    Данные экоперимента показывают, что действие рутения, осмия, родия, иридия и рения в ряду варьируемых компонентов специфично. Оно связано с электронным строением атомов и различием в таких важных характеристиках для сг- элементов, как валентные состояния, атомные радиусы, потенциалы ионизации, сродство к электрону, электроотрицательности, энергии атомизации (см. табл.). Это отражается на распределении электронной плотности между атомами образующихся структур, их опин-валентной насыщенности, а следовательно, и активности. Так, в случае (Р<1+Еи)-, (РсЦ-Оз)- и (Р(1 + 1г)-катали-заторов (рис. 5, 6) при гидрировании имеет место значительное расхождение аддитивной и наблюдаемой активностей. Интересно, что в этих условиях (Ки)т— (Ой) г-Структуры неактивны, а (1г)т — малоактивны. Особенно заметен рост активности для палладий-рутениевых, лалладий-осмиевых и палладий-иридиевых катализаторов в интервале [c.65]

    Позднее был разработан метод контрастирования каучука тетраоксидом осмия для анализа тонкой структуры каучуковых частиц в электронном микроскопе [72]. Эта методика позволила на новом уровне провести оптимизацию процессов синтеза и получить новые марки ударопрочных полистирольных пластиков с улучшенными свойствами. [c.151]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Изучалась кинетика парофазного гидрирования метилацетилена в статической системе интервале 20—230 С в присутствии различных порошкообразных и нанесенных на пемзу катализаторов никеля, кобальта, железа, родия, иридия, осмия, платины, меди, а также на никель-медных сплавах разного состава. Получены кинетические кривые, значения поряд ков реакцш по обоим компонентам, величины энергии активации, а также сопоставлены значения удепьндй. активности и селективности разных катализаторов. Результату сходные с полученными ранее для реакции гидрирования ацетилена, обсуждены в аспекте ВЛ1Ж1ИЯ электронной структуры на каталитические свойства металлов и сплавов. [c.503]

    По данным поляризационной и электронной микроскопии четырехокись осмия обеспечивает хорошую сохранность субмикроскопических структур клетки. Щадящая фиксация объясняется главным образом воздействием на белки, которые не коагулируют, а желатинизируются. При этом определенную роль играет и эффект образования сшивок. Минимальное возд ствие четырехокиси осмия на структуру по сравнению с другими фиксирующими веществами (юъясняется процессом желатинизации, который практически не сопровождается сморщиванием ткани. Четырехокись осмия реагирует с белками или их аминокислотными группами и, что особенно характерно, с липидами. Различные реакции четырехокиси осмия с активными группами различных аминокислот перечислены в табл. 5. [c.39]

    ЭТИ элементы — рутений [210] и осмий [34], находящиеся в той же группе, что и железо, — дают соединения типа (С5Н5)гМ. В первом ряду переходных металлов подобные продукты описаны для всех металлов от титана до никеля включительно большинство из них имеет такую же температуру плавления (173°), как и ферроцен, и образует ряд изоморфных кристаллов [206—209]. Все эти соединения следует рассматривать как подобные ферроцену по структуре связей исключение составляет марганец, комплекс которого по своему характеру является ионным и имеет магнитную восприимчивость, соответствующую пяти неспаренным электронам [48, 51, 95, 200, 217]. Рентгено структурные данные указывают, что даже ионные комплексы магния и марганца имеют такое же геометрическое строение [206, 207], как и ферроцен. [c.402]

    Платиновые металлы. Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых э.пементов отличаются значительным разнообразием вследствие возможности проскока ns-электронов на (и — 1)валентных орбиталей (без проскоков. электрона) характерно лишь для осмия и иридия. [c.495]

    У некоторых бобовых, как у арахиса [95] и люпина Lupinas luteas [98], а также в алейроновых зернах алейронового слоя эндосперма зерновых культур наблюдаются специфические включения в матриксе — глобоиды (см. рис. 5.4). Они прозрачны для электронов после фиксации марганцовокислым калием и непрозрачны после фиксации осмием. Наоборот, матрикс остается плотным, каким бы ни был фиксатор. Некоторые авторы сообщали о существовании структуры, напоминающей оболочку вокруг глобоидов [84, 102, 24, 42, 106, 110], но ее не удалось обнаружить у большинства изученных видов растений, и в настоящее время считается, что это артефакт [110, 117]. Глобоиды имеются также в белковых тельцах семян растений разных семейств, таких, как крестоцветные, мальвовые, маслинные, норичниковые и сложноцветные. В семенах некоторых видов из семейств льновых, березовых, молочайных, тыквенных белковые тельца также [c.129]

    Ферроцен — только одно из большого числа соединений переходных металлов, в состав которых входит циклопентадиенил-ани-он. К числу металлов, образующих жталдоцены, или структуры типа сэндвича, подобные рроцену, относятся никель, титан, кобальт, рутений и осмий. Стабильность металлоценов сильно варьирует в зависимости от металла и его состояния окисления наиболее устойчивы ферроцен, рутеноцен и осмоцен так, в этих соединениях двухвалентный ион металла приобретает электронную конфигурацию инертного газа. [c.232]

    Тот факт, что в полимерных смесях и блок-сополимерах происходит фазовое расслоение двух компонентов, уже давно был осознан исследователями, так же как и важность этого явления для проявления характерных механических свойств Но изучение структуры механических смесей, кроме самых грубых, стало возможным только после создания электронного микроскопа, хотя и после этого оставалась серьезная проблема достижения контраста между двумя фазами. Эта сложность была преодолена в 1965 г. Като [450, 451], который обнаружил, что тетраоксид осмия избирательно окрашивает макромолекулы, содержащие двойные углерод-углеродные связи, например молекулы полибутадиена и полиизопрена. Кроме того, тетраоксид осмия способствует увеличению жесткости эластомерной фазы, что позволяет получать ультрамикротомированием образцы толщиной вплоть до 500 А. Для окрашивания образец выдерживали в парах тетраоксида осмия в течение недели или в 1%-ном водном растворе ночь. Оба метода позволяют избирательно окрашивать и увеличивать жесткость ненасыщенного каучука до глубины в несколько микрон, достаточной для приг-отовления образцов. [c.60]

    Исследование морфологии гетерогенных смесей полимеров ведется, в основном, методом электронной микроскопии. Попытки наблюдать достаточно контрастную тонкую структуру смесей под электронным микроскопом долгое время не имели успеха. Только после освоения ряда методик, таких как контрастирование с помощью четырехокиси осмия (0з04) [6—8], ультратонкое резание с замораживанием объекта 9—И], отверждение объектов перед резанием с помощью облучения 12] и др., началось бурное развитие исследований в этом направлении. Ъзникла новая область — полимерография, по методологии аналогичная металлографии. [c.51]

    Однако наложить на эти бимолекулярные липидные пленки с обеих сторон еще и белковые пленки оказалось уже труднее. Собственно говоря, теперь это уже не актуально, так как за это время и без того было выяснено, что видимые на электронных микрофотографиях мембраны в самом деле имеют структуру сэндвича. Правда, следует сделать одну оговорку то, что мы различаем под электронным микроскопом в качестве мембраны, а именно светлый средний слой и оба темных слоя, не абсолютно идентично липидной и двум белковым пленкам. Ведь темные участки (как и в случае с рибосомами) контрастируются искусственно — лучше всего это получается при обработке перманганатом калия и четырехокисью осмия. Но эти вещества не красят белковые пленки, а откладываются на границе липид — белок. Таким образом, толщина мембраны, регулирующей проницаемость, в действительности несколько больше 70—100 А — величины, полученной на основании наблюдений и измерений, сделанных с помощью электронного микроскопа. [c.210]

    Тяжелые аналоги железа — рутений и осмий — имеют электронные конфигурации и . Они проявляют валентности от 2-Ь до 8+, однако наиболее прочны соединения, где они четырехвалентны. Если в металлическом состоянии свободными становятся 4 -электрона, то их ионы могут иметь оболочки , V или . Сферическая симметрия -оболочек или псевдосфероидальпая симметрия оболочек обусловливает плотную гексагональную структуру этих металлов, сохраняющуюся до температуры плавления. Аналоги кобальта — родий и иридий —имеют конфигурации V и соответственно. Эти поливалентные металлы образуют наиболее устойчивые соединения в трехвалентном состоянии. Ионы КЬ и 1г с шестью электронами, занимающими - и -уровни (конфигурации , ), имеют сферическую симметрию. Это может быть причиной существования плотных кубических упаковок ионов этих металлов. Аналоги никеля — палладий и платина — в свободном состоянии имеют конфигурации и . В соединениях они проявляют валентности 2+, 3+ и 4+, причем ионы Ме отвечают весьма стабильным соединениям. Можно полагать, что в металлическом состоянии от их атомов отщепляется по два электрона и образуются ионы и с конфигурациями или , [c.227]

    Плотная гексагональная упаковка ионов рутения и осмия в кристаллическом состоянии вплоть до температур плавления может быть объяснена наличием в их внешних оболочках электронов, возбужденных на s-уровни. Плавление не должно сопровождаться дополнительной ионизацией и изменением электронной концентрации (4 эл1атом), поэтому рутений и осмий в жидком состоянии должны иметь плотную упаковку с координационным числом, несколько меньшим 12, вследствие образования вакансий, и с межатомными расстояниями, соответствующими их кристаллическим структурам вблизи температур плавления (см. табл. 42). [c.255]

    N02)21203 -6НзО [671] (рис. 49). Здесь чакже имеются двойные кислородные мостики. Но в этом комплексе шестивалентного осмия диамагнетизм (18-электронное заполнение системы МО) обеспечивается и без взаимодействия металл—металл. В соответствии с этим центральный четырехчленный цикл остается плоским, а расстояние 0з...08 превышает расстояние М0...М0 в рассматриваемых структурах почти на 0,5 А. Отсутствие связи [c.148]


Смотреть страницы где упоминается термин Осмий электронная структура: [c.426]    [c.86]    [c.241]    [c.320]    [c.66]    [c.66]    [c.54]    [c.160]    [c.147]    [c.334]    [c.135]    [c.123]    [c.13]    [c.7]    [c.102]    [c.230]   
Неорганическая химия Том 2 (1972) -- [ c.618 , c.629 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте