Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбер тепловой

    Насыщенный раствор, содержащий углекислоты 80-100 г/л, нагревается в рекуперативных теплообменниках и тремя потоками направляется в десорбер. Тепло на десорбцию подается через паровой кипятильник. Чистый раствор отбирают в нижней части десорбера, грубо регенерированный - из середины колонны. Эти потоки после охлаждения направляются в абсорбер. Десорбция происходит при температуре 380-390 К. Такая схема регенерации с рециклом позволяет выделить в чистом виде примесь и исключить постоянное потребление сорбента (только на компенсацию потерь). Чистый СО2 используют в других производствах (карбамид, твердая углекислота и др.). [c.444]


    На рис. 6.3 представлена принципиальная технологическая схема очистки газа. Сырой газ поступает в нижнюю часть абсорбера I, в котором он орошается раствором моноэтаноламина, свободным от сероводорода. Очищенный газ уходит с верха абсорбера. Поглотитель, насыщенный сероводородом, выходит снизу абсорбера и после предварительного нагрева в теплообменниках 3 до температуры 98 °С поступает на регенерацию в десорбер 5. В десорбере (отпарной колонне) поглотитель освобождается от сероводорода. Парогазовая смесь из десорбера поступает в конденсатор-холодильник б, где происходит конденсация воды и поглотителя. Смесь кислых газов и конденсата поступает далее в сепаратор 7 для отделения газа от конденсата. Газ выводится с установки, а конденсат насосом 8 подается на орошение десорбера. Тепло, необходимое для регенерации, получается в кипятильнике 4. Регенерированный раствор поглотителя из десорбера через теплообменник 3 и холодильник 2 подается в верхнюю часть абсорбера. [c.215]

    С верха десорбера выводится сероводород и водяной пар, которые охлаждаются в холодильнике 7. В сепараторе 8 сероводород отделяется от водного конденсата и выводится из системы, а водный конденсат возвращается в десорбер. Тепло для десорбции подводится из подогревателя 9. Из средней части десорбера выводится частично регенерированный абсорбент. Он охлаждается в теплообменнике 4 и холодильнике 3 и вновь подается в абсорбер 1. [c.39]

    Несмотря на разные количества поглощаемых кислых компонентов, расход пара на регенерацию одного литра поглотителя отличается незначительно, о объясняется тем, что до поступления насыщенного раствора в десорбер производится его дегазация, где вьщеляется основное количество кислых компонентов. В десорбере тепло расходуется в основном на подогрев раствора. [c.15]

    Технологическим расчетом аппарата должны быть определены количества и составы верхнего и нижнего продуктов, количество тощего абсорбента, температуры верха и низа десорбера, тепло кипятильника, точки отбора сорбента для промежуточного охлаждения его, основные размеры (диаметр и высота) абсорбера и десорбера, а также гидравлическое сопротивление тарелок. [c.51]

    Блок абсорбции и стабилизации верхнего продукта первой ректификационной колонны 6. Основным аппаратом блока является фракционирующий абсорбер 13, разделенный глухой перегородкой на две части нижнюю — абсорбер-десорбер с 31 тарелкой и верхнюю— абсорбер второй ступени с 6 тарелками. В абсорбере-де-сорбере из газа поглощаются пропан и бутаны, а из жидкой фазы отпариваются метан и этан. Абсорбентом служит фракция н. к.— 85 °С. Абсорбер второй ступени предназначен для поглощения паров бензина, увлеченных сухим газом из абсорбера-десорбера. Абсорбентом служит фракция 140—240 °С. Насыщенный абсорбент из абсорбера второй ступени насосом подается в первую ректификационную колонну б сухой газ, выходящий с верха абсорбера второй ступени, поступает в топливную сеть завода. Тепло абсорбции в абсорбере-десорбере снимается в трех точках по высоте абсорбционной части аппарата циркуляцией абсорбента через холодильники. [c.107]


    Тепло, необходимое для отпарки нижнего продукта абсорбера-десорбера, сообщается теплоносителем — выходящей из основной [c.150]

    ООО — 4 435 ООО = 3 535 ООО Это тепло подается в низ стабилизатора путем циркуляции через печь части нижнего продукта. Материальный баланс абсорбера-десорбера установки типа А-12/9 приводится в табл. 21. Материальный баланс абсорбера II ступени приведен в табл. 22. [c.152]

    Суспензия отработанного адсорбента перетекает в десорбер 8, где происходит десорбция рафината II растворителем, предварительно нагретым в теплообменнике 15 и подогревателе И. В адсорбер и десорбер, ниже подачи раствора сырья и нагретого растворителя, для создания гидравлического затвора вводится растворитель. Далее суспензия адсорбента опускается в ступенчато-противоточную сушилку 7 с псевдоожиженным слоем. Псевдоожижение массы частиц адсорбента создается с помощью водяного пара (давлением 1 МПа). Для сообщения тепла, [c.93]

    На указанном заводе, а также на некоторых других новых заводах наблюдается стремление к использованию в качестве теплоносителя не пара, а циркулирующего агента, нагреваемого в специальной печи. Указанный способ позволяет работать прп более высоких температурах, что необходимо в связи с применением повышенных давлений, требующих повышения температуры при регенерации абсорбента. В качестве циркулирующего агента, как правило, применяется горячий регенерированный абсорбент, который отдает свое тепло насыщенному абсорбенту в десорбере п кипятильниках фракционирующих колонн. Кроме того, часть тепла абсорбента расходуется на получение пара, используемого для отпарки абсорбента нри его регенерации. [c.24]

    В отличие от других подобного рода заводов на данном заводе отсутствуют паровые котлы, а пар, необходимый для регенерации масла, получается в секциях из ребристых труб за счет тепла горячего масла, поступающего из десорбера прп температуре 272°. [c.24]

    К нему входят растворы этиленгликоля и этаноламина. С верха абсорбера уходит очищенный газ, снизу — поглотительный раствор с абсорбированными сероводородом и двуокисью углерода раствор проходит теплообменник, паровой подогреватель и входит в середину десорбера. Из десорбера сверху уходят сероводород и двуокись углерода, снизу откачивают регенерированный поглотительный раствор. Часть этого раствора подогревается в кипятильниках и возвращается в десорбер для подвода тепла, а остальное количество охлаждается в теплообменнике и холодильнике и подается на верх абсорбера. [c.162]

    В связи с тем что подогрев абсорбента в теплообменниках недостаточен, осуществляется непрерывный подвод тепла в нижнюю часть колонны. Для этого часть тощего абсорбента из нижней части десорбера прокачивают насосом через трубчатую печь /5 и в виде смеси паров и жидкости возвращают в нижнюю часть аппа- [c.143]

    Насыщенный раствор МЭА при вводе в аппарат однократно испаряется. Образовавшаяся при однократном испарении жидкая фаза О , раствора МЭА из нижней части десорбера поступает в межтрубное пространство испарителя 2, где нагревается и вновь частично испаряется за счет тепла конденсации водяного пара. Нагретый и регенерированный раствор Ар выводится из нижней части десорбера. [c.31]

    Принятие больших числовых значений At приведет к увеличению тепловой нагрузки испарителя 2 (см. рис. 1.6), обеспечивающего теплом нижнюю часть десорбера. Одновременно увеличится тепловая нагрузка конденсатора-холодильника, обеспечивающего поддержание температуры в=1П°С. С уче- [c.36]

    Тепловой баланс десорбера. Количество тепла Од, которое подводится в десорбер для отгона сероводорода и двуокиси углерода из насыщенного раствора МЭА, определяется из уравнения теплового баланса десорбера (рис. 1.8)  [c.43]

    Ссж—с раствором, направляемым в десорбер Сп — тепловые потери, составляющие 1 % общего расхода тепла. [c.44]

    Влажный газ I поступает в абсорбер 1, где при повышенном дав.лении производится осушка газа. В качестве абсорбента в верхнюю часть аппарата подается диэтиленгликоль (ДЭГ). Отводимый снизу абсорбера отработанный раствор III (насыщенный абсорбент) подогревается в теплообменнике 2 и вводится в десорбер 3, работающий при давлении, близком к атмосферному. Тепло, необходимое для испарения влаги, подводится в десорбер с помощью испарителя 7. [c.57]

    Количество тепла, которое выносится из десорбера жидким остатком первого однократного испарения сырья при температуре 2 = 105°С, равно [c.80]

    Количество тепла, которое выносит из десорбера парогазовая смесь при температуре /п=100°С, равно  [c.80]

    Регенерация абсорбента в десорбере сопровождается подводом тепла в аппарат, поэтому разница между температурой верха и низа десорбера составляет несколько десятков градусов. [c.83]

    Тепловой баланс десорбционной части АОК. Для отгонки от абсорбента легких углеводородов (в основном метана и этана), поглощенных им в абсорбционной части, в низ десорбера необходимо подать тепло Сд, количество которого определится из уравнения теплового баланса (рис. 3.3)  [c.95]


    Как видно из данных, приведенных в табл. 3.10, в низ десорбера необходимо подавать тепло 5д= 18486 кВт. Это тепло вносится в десорбер парами (десорбентом), которые выделяются из нижнего продукта десорбера при его частичном испарении ( .д=200°С) в кипятильнике АОК. Состав и мольная масса этих паров рассчитаны в табл. 3.8. Без большой ошибки можно принять, что пары эти будут соответствовать бутану, а их количество определится так  [c.95]

    При десорбции поглощенные компоненты газовой смеси должны быть вновь переведены в газообразное состояние. Для этого обычно снижают парциальное давление углеводородов при вводе водяного пара либо повышают температуру насыщенного абсорбента и подводят тепло в нижнюю часть десорбера (см. рис. ХУ-2). В последнем случае десорбер можно рассматривать как отгонную часть ректификационной колонны. [c.302]

    При понижении давления или повышении температуры наклон кривой равновесия становится более крутым, она удаляется от рабочей линии, и число тарелок уменьшается. Если десорбция осуществляется за счет подвода тепла в низ десорбера, то стекающая с первой тарелки жидкость будет направляться в кипятильник (см. гл. XIV) для образования потока паров Со и Уц = = КоХ , где Хо — состав абсорбента на выходе из десорбера. Очевидно, что в этом случае Уц + О, как это имело место при вводе водяного пара. [c.304]

    Регенерированный катализатор проходит десорбер (на схеме не показан), где продувается бутаном для удаления адсорбированного кислорода и дополнительного восстановления шестивалентного хрома в трехвалентный. Для этих целей расходуют от 3 до 5% подаваемого на процесс бутана бутан из десорбера используют как топливо, подаваемое на сжигание в регенератор. Физическое тепло отходящих из регенератора газов используют в котле-утилизаторе 5 для получения водяного пара. Катализаторная пыль, увлекаемая газами из регенератора, увлажняется в аннарате 4 и оседает в электрофильтре 3. [c.222]

    При абсорбционной осушке в барботажных аппаратах (рис. 18) влажный газ направляется в абсорбер, где в нижней скрубберной секции происходит отделение капельной влаги. Абсорбер оборудован колпачковыми тарелками. Навстречу потоку газа в абсорбер подается раствор гликоля, вводимый на верхнюю тарелку. Стекая по тарелкам вниз, раствор извлекает влагу из газа и, насыщаясь, отводится с низа колонны на регенерацию. Осушенный газ проходит верхнюю скрубберную секцию, в которой отделяются капли унесенного раствора, и поступает в газопровод. Насыщенный влагой раствор гликоля выходит из абсорбера, проходит первый теплообменник, где подогревается за счет тепла горячего поглотителя, выходящего с низа десорбера, и поступает в выветриватель, в котором из него выделяются газы, поглощенные в абсорбере. Затем раствор подается во второй теплообменник и далее в десорбер для регенерации. Низ десорбера соединен с ребойлером, где раствор нагревается за счет тепла водяного пара или циркулирующего теплоносителя. [c.84]

    Иногда в качестве воздействия, управляющего температурой в регенераторе, используется изменение количества поступающего в регенератор кокса, что достигается изменением расхода либо пара в десорбер реактора, либо шлама в реактор [27]. Последний способ более приемлем, поскольку при управлении расходом пара диапазон регулирующего воздействия весьма невелик. Еще один способ управления— подача в регенератор веществ, интенсифицирующих окисление СО в СО2 с выделением тепла (при высокотемпературной регенерации). [c.53]

    Од в нижнюю часть десорбера, либо за счет ввода водяного пара. Регенерированный абсорбент, охлажденный в теплообменнике 7 и холодильнике 2, возвращается в абсорбер. В случае работы десорбера с подводом тепла его можно рассматривать как отгонную ректификационную колонну. [c.194]

    Насыщенный абсорбент в смеси с конденсатом из фазного разделителя проходит теплообменник 10. сепаратор 12 и двумя потоками подается в питательную секцию АОК, В нижнюю часть АОК подводится тепло, обеспечивающее частичную отпарку извлеченных из газа компонентов. Поток частично регенерированного абсорбента, пройдя гидравлическую турбину I и теплообменник 10, направляется в десорбер 8 для окончательной регенерации. Чтобы обеспечить извлечение в АОК соответствующих компонентов газа, в верхнюю часть АОК вводится свежий (регенерированный) абсорбент. Б отличие от ректификационной колонны орошением АОК является вводимый со стороны абсорбент, а не конденсат паров ректификата. Применение АОК позволяет исключить конденсационное охлаждение и несколько упростить технологическую схему. [c.195]

    Газовый блок состоит из четырех секций сероочистки, компрессии, абсорбции и стабилизации бензина. Жирный газ VI направляется в абсорбер 19, где сероводород абсорбируете 15%-ным раствором моноэтаноламина, после чего подается на прием газомоторных компрессоров 28. Насыщенный сероводородом раствор моноэтаноламина нагревается в теплообменниках до 80 °С и подается в десорбер 20 для регенерации. Выделившийся с верха десорбера сероводород XIII выводится с установки. Регенерированный раствор моноэтаноламина после охлаждения в теплообменниках и холодильниках до 35 °С возвращается в абсорбер 19. В верхней секции десорбера тепло снимается путем циркуляции конденсата с 14-ой тарелки через холодильник на 19-ую тарелку. [c.112]

    Тепло, внесенное в абсорбер насыщенным абсорбентом п водяны1 г каром и подводимое через кипятильник, отводится отпаренным абсорбентом и газом. Из теплового баланса десорбера находим количество тепла, подлежащее подводу через кипятильник  [c.248]

    Блок абсорбции-десорбции (фракционирующий абсорбер). Во фракционирующем абсорбере контролируется и регулируется подача абсорбента в абсорбер II ступени, в зависимости от содержания С5 в уходящем сухом газе подача абсорбента в абсорбер-десорбер в зависимости от содержания Сз в уходящем сверху газе расход деэтаиизированной фракции н.к.— 140 °С и абсорбента, выходящего из абсорбера, в зависимости от содержания Сг в жидкой фазе уровень в кипятильнике фракционирующего абсорбента давление. Излишнее тепло в абсорбере снимается циркулияцией абсорбента через холодильники. Температура под тарелкой, с которой забирается абсорбент, регулируется подачей охлажденного абсорбента. Расход циркуляционного абсорбента регистрируется. [c.224]

    Очищенный углеводородный газ, выходящий с верха абсорбционной колонны 9, проходит газосепаратор 13, затем выводится с установки. Насыщенный раствор МЭА с низа колонны 9 нагревается в теплообменниках 11 я проходит регенерацию в десорбере 14. Регенерированный раствор МЭА с низа десорбера 14 забирается насосом 12, прокачивается через теплообменники И и холодильник 10 и возвращается на абсорбцию в колонну 9. Низ десорбера 14 подогревается за счет тепла кипятильника 17. Выходящие с верха десорбера 14 сероводород и диоксид углерода направляются в десорбер 6. Вместе с десорбированными Н.,5 и СО, после I ступени очистки газы проходят водяной холодильник 15, где конденсируются водяные пары, и попадают в газоводоотделитель 16. С верха газосепаратора выводятся кислые газы (сероводород, диоксид углерода и примеси), [c.58]

    Есл -.выделение поглощенных компонентов иа насы.- щенного абсорбента намечается производить путем десорбции, абсорбент предварительно подогревается теплом отходящих потоков или паром, а затем подается на верх десорбера, в нижкюю часть которого вдувается десорбирующий агент (например, чистый компонент разделяемой смеси). Отпаренный компонент вместе с десорбирующим агентом направляется на дальнейшую переработку, а ненасыщенный абсорбент охлаждается в теп/ообмелнике и снова подается в абсорбер. [c.38]

    Десорбер. как и абсорбер, представляет собой цилиндрический тарельчатый аппарат. Обводненный гликоль, предварительно подогретый п теплообменнике, подается в середину десорбера. Сверху его вы-х()дяг пары воды, которые конденсируются в конденсаторе-холодиль-нике, и конденсат частично возвращается на верх десорбера в качестве оро1ления. Вниз десорбера подводится тепло путем подогрева части гликоля в паровом подогревателе. Регенерированный гликоль, содержащий 1—5 вес. % воды, охлаждается в теплообменнике, холодильнике и возвращается в абсорбер. [c.158]

    Десорбцию проводят при относительно повышенных температурах (160—200° С) и пониженных давлениях (3—5 ат). Для десорбции углеводородов из насыщенного абсо"рбента требуется, чтобы парциальное давление извлекаемого компонента в газовой фазе было ниже, чем в жидкой. В качестве десорбирующего агента обычно применяют острый водяной пар. Отпаренные тяжелые углеводороды и водяной пар отводятся сверху десорбера, проходят конденсатор-холодильник и поступают в водоотделитель. Из водоотделителя вода выводится снизу, часть жидких углеводородов возвращается в десорбер на орошение, а балансовое количество поступает в емкость нестабильного газового бензина. Снизу десорбера выходит регенерированный абсорбент, который в теплообменнике отдает свое тепло насыщенному абсорбенту, охлаждается в холодильнике и возвращается наверх абсорбера. [c.166]

    Освобожденный от метана и этана насыщенный абсорбент с низа отгонного куба через регулятор уровня поступает самотеком в систему теплообменников 9, из которой, дополнительно нагревшись за счет тепла тощего абсорбента, поступает в десорбер 10. В десорбере происходит окончательная отправка всех поглощенных обсорбентом углеводородов. Десорбер оборудован такими же тарелками, как и абсорбер, и состоит из верхней ректификационной и нижней отпарной секций. [c.143]

    Пары абсорбента, поднимаясь вверх, постепенно охлаждаются и, конденсируясь, отдают тепло стекающей навстречу 1< 1дкости, из которой выпариваются бензиновые углеводороды. Наличие в пото ке водяных паров, уменьшающих парциальное давление в системе, способствует лучшей отпарке бензиновых углеводородов. Смесь паров углеводородов и водяного пара поступает в верхнюю часть десорбера. Навстречу им стекает поток холодного орошения, назначение которого — сконденсировать и осадить в жидкой фазе легкие фракции абсорбента, увлеченные потоком паров. Количество подаваемого холодного орошения регулируют в зависимости от заданной температуры верхней части колонны. [c.144]

    Газ после установки 7 еще содержит пары летучих органических соединений (бензол, толуол). Для их улавливания газ охлаждают водой в холодильнике пепосредственного смешения и направляют в абсорбер 9, орошаемый поглотительным маслом. Еыходящий из абсорбера так называемый обратный коксовый газ используют для обогревания коксовых печей, а его избыток расходуют для других целей. Насыщенное поглотительное масло с низа абсорбера проходит теплообменник 10, где подогревается обратным регенерированным маслом, и поступает в десорбер 11. Там происходит ректификация, в результате которой отгоняется смесь легких ароматических соединений (сырой бензол). Освобожденное от сырого бензола поглотительное масло отдает тепло насыщенному маслу в теплообменнике 10, дополнительно охлаждается в холодильнике 12 и вновь используется для абсорбции бензольных углеводородов из коксового газа. [c.68]

    Для осуществлеиия процесса десорбции подводят тепло в низ агтарата одним из способов, рассмотренных в главе XIV. Чаще всего используют подвод тепла горячей струей. Кроме этого, тепло в десорбер поступает с потоками насыщенного абсорбента, температуру которого повышают до необходимой величины в теплообменнике 2 и подогревателе б (рис. ХУ-2), и с водяным паром. Это тепло без учета теплопотерь в окружающую среду, которые для крупных промышленных установок относительно невелики, отводится потоками отпаренного абсорбента и десорбированным газом. Теиловой баланс десорбера [c.305]

    Оптимальный состав регенерированного поташного раствора и минимальный расход тепла на его регенерацию определялись расчетным путем с помощью известного в литерат1 ре метода расчета оптимальных условий регенерации моноэтаноламиновой очистки /Э,47,предполагающего, что минимум расхода тепла определяется критическим сечением регенератора. Исходные технологические параметры и результаты расчета представлены на рис. 4 и 5. По мере увеличения концентрации двуокиси углерода в регенерированном растворе ( ) критическое сечение регенератора смещается в сторону больших концентраций, т.е, вверх по колонне и при > 18,5 об/ об. совпадает с верхним сечением десорбера. Точка пересечения кривых общего расхода тепла на регенерацию в критическом и верхнем сечениях соответствует минимальному расходу теп.ча 3120 ккал/м . При этом обеспечивается регенерация абсорбента до остаточного содержания двуокиси углерода в растворе, равного 7,3 об/об. Полученные значения являются предельными, к которым можно приблизиться лишь при бесконечно большой поверхности контакта. По экспериментальным данным, полученным для тех же рабочих условий, минимальный расход тепла составляет 3840 ккал/м 1 , а оптимальная концентрация двуокиси углерода в абсорбенте - 13 ос1/об. [c.161]


Смотреть страницы где упоминается термин Десорбер тепловой: [c.93]    [c.159]    [c.102]    [c.5]    [c.318]    [c.282]    [c.194]    [c.204]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.210 ]

Расчеты основных процессов и аппаратов переработки углеводородных газов (1983) -- [ c.43 , c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбер



© 2025 chem21.info Реклама на сайте