Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхности взаимодействие с жидкостям

    Однако перед задачей о внешнем обмене методы математической гидродинамики оказываются бессильными. Искусственность и известная внутренняя противоречивость понятия идеальной жидкости с особенной остротой проявляется вблизи физических границ движущейся жидкости, т. е. как раз в той области течения, где локализованы эффекты, характерные для процесса обмена. Непосредственно у поверхности взаимодействия жидкости с твердым телом (или с другой жидкостью) принцип непрерывности скорости с необходимостью должен быть нарушен. Поверхность раздела не может явиться источником сил, тормозящих идеальную жидкости. Единственное физическое свойство, которое может быть приписано поверхности, ограничивающей идеальную жидкость,—- это непроницаемость. Поэтому на поверхности должна обращаться в нуль нормальная составляющая скорости, но отнюдь не тангенциальная. Это означает, что модель движения идеальной жидкости включает в себя представление [c.15]


    Поверхность раздела между двумя жидкостями обычно обладает положительной свободной энергией. Межфазное поверхностное натяжение на границе раздела двух жидкостей также положительно. Условием полной смешиваемости жидкостей является выполнение требования, чтобы межфазное натяжение было отрицательным или равным нулю. В таком случае молекулярные силы не будут препятствовать смешению жидкостей, так как каждая из них притягивает молекулы другой с такой же или с большей силой, чем сила, с которой каждая жидкость притягивает свои собственные поверхностные молекулы. В этом случае молекулы свободно перемещаются из одной жидкости в другую. На поверхности раздела жидкость — жидкость молекулы ориентируются таким образом, чтобы энергия их взаимодействия была максимальной [210]. [c.192]

    При наличии над поверхностью жидкости какого-либо газа, например испарившейся жидкости, необходимо учитывать взаимодействие молекул, покидающих поверхность капли жидкости с молекулами, находящимися в окружающем поле. В результате такого взаимодействия молекула совершает колебательное движение между поверхностью капли жидкости и молекулами поля. Часть из колеблющихся молекул поглощается жидкостью, что оценивается коэффициентом аккомодации б. [c.102]

    Когда краевой угол 0 равен О, работа притяжения на поверхности раздела жидкость — твердое тело становится равной 7 , т. е. она представляет величину механического взаимодействия между молекулами жидкости одной и той же природы. Это—предельный случай полного смачивания. [c.331]

    Явление смачивания, приводящее к формированию краевого угла между жидкостью и твердой подложкой, лежит в основе механизмов, определяющих равновесие и кинетику влаги в пористых телах. Величина равновесного краевого угла 0о определяется полем поверхностных сил и энергией взаимодействия жидкости с твердой подложкой. Слабое взаимодействие ведет к несмачиванию, сильное —приводит к растеканию жидкости по поверхности, ее полному смачиванию. [c.210]

    В основу одномерной физической модели и соответствующего математического описания процесса положен закон Дарси с учетом взаимодействия жидкости с поверхностью частиц без сегрегации последних. При этом все характеристики модели являются макроскопическими и точно измеримыми. Так, в полный потенциал течения жидкости входят компоненты, связанные с взаимодействием жидкости с поверхностью частиц и вертикальным перемещением влажного материала, причем сумма обоих компонентов устанавливается с помощью манометра. [c.336]


    На рис. 189 кольца, окрашенные в темный цвет, указывают на струйчато-пленочный характер движения дисперсной фазы, при этом так же, как и в системе газ — жидкость, не вся поверхность насадки служит поверхностью контакта. Контакт между фазами происходит на отдельных элементах насадки при отсутствии заметной турбулизации потоков на поверхности пленок жидкости. Дальнейшее увеличение нагрузки колонны приводит к тому, что все большая поверхность насадки покрывается пленкой жидкости. При этом наблюдается взаимодействие потоков. Пленка начинает разрываться, заметна ее пульса- [c.385]

    Возникновение новых фаз. Рассматривая кинетику гетерогенных процессов, мы до снх пор предполагали (хотя и не оговаривали этого), что между взаимодействующими фазами имеется поверхность раздела и что не происходит образования никакой новой фазы, В действительности так и бывает во многих практически встречающихся процессах, например при испарении жидкости или твердого вещества с поверхности, при кристаллизации растворенного вещества из насыщенного раствора на имеющихся уже кристаллах этого вещества, при конденсации пара на поверхности данной жидкости или твердого вещества. [c.489]

    Стационарные пеногенераторы применяют, главным образом, для тушения в емкостях легковоспламеняющихся и горючих жидкостей. Они устанавливаются так, что при включении их в действие пена покрывает поверхность горящей жидкости. Передвижные пеногенераторы смонтированы на автомашинах и передают пену по рукаву к месту пожара. В ручных огнетушителях химическая пена получается взаимодействием жидких кислотных и щелочных растворов (см. стр. 66). [c.60]

    Явления, обусловливаемые молекулярным взаимодействием, играют большую роль в условиях нефтяного пласта, высокодисперсной пористой среды с развитой поверхностью, заполненной жидкостями, которые содержат поверхностно-активные вещества. Однако механизм этих явлений не познан настолько, чтобы при разработке нефтяных месторождений их можно было учитывать количественно. Использование изученных закономерностей в технологических процессах возможно лишь тогда, когда они описаны математически, с учетом основных факторов, определяющих эти закономерности. Решить такую задачу для нефтяного пласта трудно, так как геолого-физические и минералогические характеристики пласта и свойства жидкостей и газов, насыщающих его, не постоянны. Как результат молекулярно-поверхностных эффектов на границе раздела фаз в нефтяном пласте наибольшее значение имеет процесс адсорбции активных компонентов нефти на поверхности породообразующих минералов. С этим процессом прежде всего связана гидрофобизация поверхности, а следовательно, и уменьшение нефтеотдачи пласта. Образование адсорбционного слоя ведет к построению на его основе граничного слоя нефти, вязкость которого на порядок выше вязкости нефти в объеме, а толщина в ряде случаев соизмерима с радиусом поровых каналов. В связи с этим уменьшается проницаемость и увеличиваются мик-ро- и макронеоднородности коллектора. [c.37]

    Влияние турбулентных пульсаций на перенос вещества учитывается моделью проникновения, получившей широкое распространение за последние 10—15 лет. При использовании этой модели предполагается, что турбулентные пульсации непрерывно подводят к межфазной поверхности свежие порции жидкости и смывают жидкость, уже прореагировавшую с газом. Таким образом, каждый элемент поверхности взаимодействует с газом в течение некоторого времени (время контакта, период обновления), после чего данный элемент поверхности обновляется. Считают, что за время контакта растворение газа происходит путем нестационарной диффузии в неподвижный слой бесконечной толщины. [c.147]

    Циклонно-пенный аппарат (ЦПА). Циклонно-пенный аппарат разработан Богатых с сотрудниками [42—47]. В ЦПА сочетается принцип работы циклонов (использовано действие центробежных сил и сил инерции) и пенных аппаратов (взаимодействующие жидкость и газ создают слой пены с высокоразвитой и интенсивно обновляющейся межфазной поверхностью). На этом же принципе основаны и некоторые другие типы реакторов, разработанные в СССР и за рубежом, например,центробежно-пенный аппарат[275]. Различные типы такого рода газоочистителей представляют собой, как правило, приемы компоновки двух аппаратов, т. е. конструктивную разработку компактной двухступенчатой очистки. [c.252]

    Влияние природы взаимодействующих компонентов иногда выражают через коэффициенты поверхностного натяжения о на границах Т—Ж, Ж—Т, Т—Т, а также угол смачивания 9с, выражающий степень лиофильности. Смачивание твердой поверхности носителя жидкостью (раствором) происходит при всех методах пропитки. Условия смачивания [32] могут быть определены энергетическими соотношениями в системе, т. е. величинами свободной энергии на межфазных поверхностях и соотношением между силами адгезии и когезии [81]. [c.132]


    В промышленности применяют колпачковые, ситчатые, наса-дочные, пленочные трубчатые колонны и центробежные пленочные ректификаторы. Они различаются в основном конструкцией внутреннего устройства аппарата, назначение которого — обеспечение взаимодействия жидкости и пара. Это взаимодействие происходит при барботировании пара через слой жидкости на тарелках (колпачковых или ситчатых) либо при поверхностном контакте пара и жидкости на насадке или поверхности жидкости, стекающей тонкой пленкой. [c.299]

    В циклонно-пенных аппаратах сочетается принцип работы пенных и циклонных аппаратов, используется центробежная сила и сила инерции для создания (при взаимодействии жидкости и газа) пены с высокоразвитой и интенсивно обновляющейся поверхностью. На этой же основе создан ряд реакторов. [c.13]

    В основном в промывочных жидкостях присутствуют кристаллические вещества. Тенденция к правильному расположению частиц в соединении является одним пз важных проявлений химической связи. Правильное (периодическое) пространственное расположение атомов, ионов, молекул в кристалле, т, е. его структура, зависит от вида химической связи, эффективных радиусов ионов, их поляризуемости. От структуры кристаллического вещества в основном зависят такие важные для технологии буровых растворов свойства веществ, как их измельчаемость, форма частиц, химический состав их поверхности, взаимодействующей с дисперсионной средой и химическими реагентами. Несмотря на то что связи [c.11]

    Обычно в экстракторах для создания возможно большей поверхности контакта фаз и, соответственно, для увеличения скорости массопередачи одна из жидкостей (дисперсная фаза) распределяется в другой жидкости (сплошная фаза) в виде капель. В зависимости от источника энергии, используемой для диспергирования одной фазы в другой и перемешивания фаз, экстракторы каждой из указанных выше групп могут быть подразделены на аппараты, в которых диспергирование осу-н ествляется за счет собственной энергии потоков (без введения дополнительной энергии извне), и аппараты с введением внешней энергии во взаимодействующие жидкости. Эта энергия подводится посредством механических мешалок, сообщения колебаний определенной амплитуды и частоты (пульсаций или вибраций), путем проведения экстракции в поле центробежных сил и другими способами. [c.538]

    Метод ядерного магнитного резонанса (ЯМР) —замечательное достижение современной физики — с большим успехом используется в различных областях науки и техники. Метод-импульсного ЯМР в последние годы начал применяться для лабораторных исследований коллекторских свойств горных пород (водо- и нефтенасыщенность, пористость, проницаемость и т. д.) п взаимодействий жидкости с поверхностью твердого тела в пористой среде, а также для промысловых испытаний (ядерный магнитный каротаж). [c.100]

    Изменения релаксационных характеристик жидкости в дисперсной системе определяются, в основном, адсорбционным взаимодействием жидкости с поверхностью образца. ЯМР — релаксация воды в дисперсных системах — сводится к влиянию на Г] и адсорбционных свойств подложки. Известно, по крайней мере, два механизма, увеличивающих скорость релаксации вблизи поверхности. Первый — это увеличение вязкости жидкости в аномальных слоях, вызывающее сокращение времени релаксации протонов, находящихся в этом слое. Второй — присутствие локальных магнитных полей на поверхности, обусловленных небольшим количеством парамагнитных центров. Эти [c.101]

    Уравнение выведено на основании предположения, что процесс собственно растворения или химического взаимодействия жидкости с поверхностью твердого тела протекает весьма быстро, в то вре,мя как диффузия вещества из слоя, непосредственно примыкающего к поверхности раздела, идет достаточно медленно. Поэтому определяющим процессом здесь является процесс диффузии, описываемый первым законом Фика. [c.147]

    Выше мы рассматривали поверхностное натяжение на границе жидкость — газ или жидкость — пар. Для этих систем вследствие большей разряженности газа или пара взаимодействием между молекулами жидкости и газа или пара можно пренебречь. Этого, конечно, нельзя сделать в случае поверхностного натяжения на границе жидкость — жидкость. Наличие над слоем первой жидкости слоя другой, несмешивающейся с нею жидкости приводит к понижению меж-фазного поверхностного натяжения, поскольку молекулы второй жидкости притягивают к себе молекулы первой ч таким образом уменьшают действие некомпенсированных сил на поверхности первой жидкости. Понижение межфазного [c.115]

    В узких капиллярах вследствие лиофильного или лиофобного взаимодействия жидкости со стенками капилляра поверхность жидкости, искривляясь, принимает форму вогнутого или выпуклого мениска. При этом появляется дополнительная, направленная в глубь одной из фаз, составляющая сил пограничного натяжения, действующих по касательной к межфазной границе. Таким образом, возникновение мениска приводит к появлению на границе раздела дополнительного капиллярного давления Ар, величина которого связана со средней кривизной поверхности и а уравнением Лапласа (1806)  [c.153]

    С поверхностными явлениями тесно связано поведение жидкости на границе с твердым телом. Известно, что в некоторых случаях жидкость способна растекаться по поверхности твердого тела тонким слоем. Так ведет себя, например, вода на поверхности чисто вымытого стекла. В этом случае говорят, что жидкость смачивает твердое тело. Е5 других случаях та же вода на поверхности стекла или фарфора, загрязненной жиром, собирается в капли и не смачивает поверхность. Очевидно, что явление смачивания обусловлено процессами взаимодействия на поверхности раздела жидкости и твердого тела между собой и с газовой фазой. При смачивании жидкость приобретает большую поверхность раздела как с твердым телом, так и с газовой фазой. В то же время она закрывает поверхность раздела твердое тело — газ. Если обозначить поверхностное натяжение на границе с газовой фазой для твердого тела и жидкости соответственно Отг и Ожг, а избыточную поверхностную энергию на границе твердое тело — жидкость атж, то изменение энергии Гиббса при растекании жидкости по поверхности твердого тела 5 составит [c.307]

    Вторая стадия — установление взаимодействия между молекулами газа и молекулами поверхности раздела Жидкости, обладающими избыточной энергией за счет своей неуравновешенности (поверхностное натяжение). Энергия взаимодействия между молекулами понижает поверхностную энергию пограничного слоя и создает условия для проникновения молекул газа в объем жидкой фазы. [c.185]

    Исследованию взаимодействия жидкости с твердой поверхностью в научной литературе также уделяется много внимания, так как процессы смачивания и растекания, капиллярные явления, [c.213]

    Исследованию взаимодействия жидкости с твердой поверхностью в научной литературе также уделяется много внимания, так как процессы смачивания и растекания, капиллярные явления, растворение поверхности твердого тела весьма актуальны для современной технологии машино- и приборостроения. На этих явлениях основаны процессы пайки и сварки металлов и других материалов, нанесение поверхностных слоев и много других процессов (склеивание и т. д.). [c.223]

    Под Е1А.В понимают химические соединения, способные вследствие положительной адсорбции изменять фазовые и энергетические взаимодействия на различных поверхностях раздела жидкость — воздух, жидкость — твердое тело, нефть — вода. Поверхностная активность, которую в определенных условиях могут проявлять многие органические соединения, обусловлена как химическим строением, в частности, дифильно-64 [c.64]

    В практике могут быть Рис. 1,2. Капля жидкости на несмачиаае- реализованы два случая мой поверхности. взаимодействия жидкости с [c.8]

    В последние годы существенные успехи достигнуты в увеличении эффективности насадочных, ситчатых и других эксчрак-ционных колонн за счет введения в колонну энергии внешнего источника для развития поверхности взаимодействующих жидкостей. Наиболее простым является сообщение пульсацш жидкости, заполняюш ей колонну. Однако это мероприятие, увеличивая эффективность работы колонны, серьезно снижает ее производительность вследствие эмульгирования. [c.204]

    При рассмотрении влияния этих двух типов загрязнений необходимо принимать во внимание следующие соображения. Очищенная и даже дистиллированная водч кавитирует при самых незначительных величинах растягивающих напряжений. Это значит, что какие-то нерастворимые загрязнения имеются в любом произвольно малом объеме воды. Влияние мельчайших частиц гидрофобного вещества, имеющихся в жидкости, на ее прочность еще не изучено окончательно. Помимо других факторов, степень этого влияния зависит также от размеров и формы частиц. Надо думать, что в этом случае разрыв сплошности жидкости по поверхности взаимодействия жидкости и твердой частицы потребует меньших усилий, чем в случае однородной жидкости. Наличие в жидкости мельчайших пузырьков, наполненных газом, несомненно нарушает однородность ее структуры и способствует разрыву сплошности. Для большинства жидкостей, с которыми мы имеем дело, и особенно для воды таким газом является воздух. Однако воздух очень хорошо растворяется и трудно объяснить наличие в жидкости очень маленького пузырька, наполненного воздухом, в то время как силы поверхностного натяжения создают внутри пузырька давление, вполне достаточное для полного растворения воздуха. [c.42]

    Ропер, Хэтч и Пигфорд [1] рассмотрели проблему химической абсорбции на примере одновременной абсорбции двух взаимодействующих между собой газов в жидкой фазе. Физическим процессом, который наводит на мысль о рассмотрении этой проблемы, является абсорбция двуокиси углерода и аммиака водой в жидкой фазе СОг н N1 3 реагируют с образованием либо карбоната, либо карбамата аммония. Ясно, что рассматриваемый процесс не может протекать в режиме мгновенной реакции, потому что концентрация обоих реагентов на поверхности газ — жидкость конечна. Следовательно, необходимо рассмотреть только реи<имы медленной и быстрой реакции. [c.112]

    Перемещивание широко применяется в химической промышленности для приготовления суспензий, эмульсий и растворов. Посредством перемешивания достигается тесное соприкосновение частиц и непрерывное обновление поверхности взаимодействия веществ. Вследствие этого при перемешивании значительно ускоряются процессы массообмена, например растворение твердых веществ в жидкостях, процессы теплообмена и лротекаиие многих химических реакций. Перемешивание используют для ускорения абсорбции, выпаривания и других основных процессов химической технологии. [c.346]

    В скрубберах наблюдаются два основных процесса взаимодействия между частицами и жидкостью. Первым из них является кондициоянрававие частиц, при -котором увеличивается эффективный размер частиц и облегчается их улавливание. Второй процесс заключается в осаждении частиц на поверхность промывной жидкости. Кондиционирование частиц может осуществляться либо путем агломерации частиц, либо путем конденсации паров на поверхности частиц, либо путем сочетания этих двух методов. Указанные методы, в свою очередь, являются комбинацией других основных процессов. Так, например, кондиционирование частиц начинается с процесса образования активных центров, за которым следует рост капель и агломерация, в то время как улавливание частиц тред- [c.415]

    Если заменяются поверхности между жидкостью и паром одной поверхностью между жидкостями, ликвидируется зависимость от давления насыщенного пара и возникает зависимость от взаимной растворимости компонентов фаз, возможно изменение ориентации молекул на поверхности и в ряде случаев образование химических связей (водородных) между молекулами граничащих фаз. Из сказанного ясно, что само поверхностное натяжение не может являться характеристической величиной в правиле Антонова. Когда используются поверхностные натяжения взаимнонасыщенных жидкостей, в определенной степени компенсируется разность от влияния давления насыщенного пара и взаимосмешиваемости жидкостей. Если обе жидкости обладают низким давлением насыщенного пара, практически нерастворимы и молекулы их симметричны, а также не взаимодействуют химически, то такие системы должны достаточно хорошо подчиняться правилу Антонова без условия взаимного насыщения растворителей. С учетом изменения всех указанных факторов получим уравнение в общем случае, связывающее межфазное и поверхностное натяжение [48]  [c.437]

    Состояние вещества около межфазной границы отличается от его состояния внутри фазы. Любая молекула, которая находится вблизи межфазной поверхности, взаимодействует как со своими соседями в той же фазе, так и с молекулами, образующими другую фазу. Поскольку величина межмолекулярных сил зависит от вида молекул и от расстояния между ними, в общем случае силы, с которыми молекула притягивается к каждой из двух фаз, отличаются друг от друга. Например, в простейшем случае однокомпонентной системы жидкость/газ молекулы, которые находятся вблизи поверхности, в конечном итоге притягиваются к жидкости, так как притяжение к газовой фазе, имеющей малую плотность, пренебрежимо мало. [c.75]

    Смачивание. Если каплю жидкости поместить на твердую повергхность, то через некоторое время (часто достаточно длительное) капля принимает форму, зависящую как от ее размеров и плотности жидкости, так и от характера взаимодействия жидкости с поверхностью. Поверхность контакта жидкости с плоской поверхностью ограничена линией, называемой периметром смачивания. В каждой точке периметра смачивания соприкасаются три фазы твердая, жидкая и газообразная (рис. 19). [c.47]

    Процесс грануляции порошков может протекать самопроизвольно, так как относится -к процессам, протекающим благодаря убыли поверхностной энергии системы при слипании частиц. Активизации этого процесса способствует омачивание поверхности частиц жидкостью, обеспечивающее создание пограничного слоя с повы-щенной вязкостью, который способствует адгезионному взаимодействию, а следовательно, склеиванию частиц. Смачивающей жидкости обычно требуется очень мало, так как при ее избытке получаются разные по размеру крупные комья. Однако при ее недостатке получается частично несвязанный порошок, а частично очень мелкие гранулы. Поэтому очень важен контроль за количеством подаваемой смачивающей жидкости. [c.252]


Смотреть страницы где упоминается термин Поверхности взаимодействие с жидкостям: [c.685]    [c.16]    [c.387]    [c.26]    [c.69]    [c.224]    [c.112]    [c.27]    [c.175]    [c.260]    [c.286]    [c.281]    [c.193]    [c.104]   
Физико-химические основы смачивания и растекания (1976) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие поверхность-жидкость в порах

Устойчивость тонких слоев жидкости и энергия взаимодействия между поверхностью двух тел

Химические реакции в системах, в которых существует взаимодействие между поверхностью раздела и частицами жидкости или газа



© 2024 chem21.info Реклама на сайте