Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения интерметаллические медью

    Олово — никель. Сплав олово — никель, содержащий 60—65% 5п, обладает высокой антикоррозионной стойкостью и хорошими декоративными свойствами. Этот сплав представляет собой интерметаллическое соединение, которое можно получить только электролитическим способом. Электролитическое покрытие этим сплавом имеет красивый внешний вид (розовый оттенок), обладает повышенной твердостью и износостойкостью и при определенных условиях электролиза получается блестящим непосредственно из ванны. Защитно-декоративные покрытия наносят на изделия из меди и ее сплавов или стали с медным подслоем взамен хромирования и никелирования. [c.326]


    Термообработка цветных сплавов. Алюминий не претерпевает качественных изменений при нагреве, однако сплавы его на основе таких материалов, как магний или медь, увеличивают свою растворимость с повышением температуры, а при охлаждении интерметаллические соединения осаждаются. Так как температура плавления эвтектики и температура полной растворимости некоторых сплавов тесно взаимосвязаны, то температура термообработки близка к критической. Температура термообработки эвтектического медно-алюминиевого сплава, например, равна 500 °С, а температура плавления его составляет 510°С. Отжиг других алюминиевых сплавов осуществляется в основном для снятия напряжений путем нагрева изделий примерно до 350 °С. [c.317]

    Влияние образования интерметаллического соединения в амальгаме в процессе цементации может быть показано на примере цементации меди амальгамой цинка. Вначале цементация меди цинком протекает достаточна быстро, но переходящая в амальгаму медь связывает цинк в очень малорастворимое интерметаллическое соединение. Цинк связанный в соединение с медью, уже не участвует в процессе цементации, и при исчезновении цинка в жидкой фазе процесс цементации фактически прекращается, вернее он проходит с исчезающей малой скоростью. [c.220]

    Такими свойствами сплавов пользуются в технике, например, при электролитическом рафинировании меди при этом более положительные металлы, входящие как примесь в сплав, выпадают в осадок в виде шламма (золото, серебро, платина и их интерметаллические соединения), а медь переходит в раствор. [c.95]

    В интерметаллическом соединении поверхность меди составляет 26%, в твердом растворе 2%, а в алюминии, расположенном около границ зерен (считая содержание меди 0,3%),— [c.18]

    В интерметаллическом соединении поверхность меди составляет 26%, в твердом растворе 2%, а в алюминии, расположенном около границ зерен (считая содержание меди 0,3%),— 0,15%. Следовательно, процесс межкристаллитной коррозии дуралюмина начинается прежде всего разрушением алюминия из интерметаллического соединения, так как там катодная площадь больше, алюминий значительно сильнее заполяризован и менее совершенна окисная пленка. [c.74]

    Металлические и металлоподобные соединения. Никель с металлами УП1 группы (кроме Ни и Оз), марганцем и медью дает непрерывные твердые растворы. У никеля весьма разнообразны также интерметаллические соединения, например, ряда  [c.608]

    Свинец. Применение свинца в качестве конструкционного материала ограничено его низкими прочностными свойствами. Металл рекристаллизуется после механической деформации уже при комнатной температуре с образованием менее прочно связанных между собой крупных зерен. Рекристаллизации способствуют добавки висмута и олова, которые внедряются в твердый раствор, тогда как добавки меди, кальция и железа подавляют рекристаллизацию, образуя в свинцовой матрице интерметаллические соединения. [c.36]


    Удаление мышьяка основано на образовании тугоплавких соединений As—Al. Одновременно с мышьяком удаляется остаточное железо и частично медь и сурьма, а также интерметаллические соединения с алюминием. Алюминий вводится в черное олово при температуре не выше 500—600 °С. [c.41]

    Для предотвращения вредного влияния загрязнения воды ионами Си + можно применять медные трубы, внутренняя поверхность которых покрыта оловом (из так называемой луженой меди). Оловянное покрытие не должно иметь пор, чтобы избежать усиления коррозии меди на незащищенных участках из-за действия олова (или интерметаллических соединений медь—олово), которое является катодом по отношению к меди. [c.328]

    Каждый максимум на кривой плавкости (соответственно точке S на рисунке) отвечает определенному интерметаллическому соединению. Число таких максимумов говорит о числе отдельных соединений. Например, на диаграмме плавкости сплавов меди и магния [c.312]

Рис. Х1И-7. Диаграмма плавкости сплавов магния и меди, а также их интерметаллических соединений. Рис. Х1И-7. <a href="/info/1726775">Диаграмма плавкости сплавов</a> магния и меди, а также их интерметаллических соединений.
    В 1926 г. В. Юм-Розери, изучая интерметаллические соединения, обнаружил закономерность, согласно которой в таких соединениях отношение числа валентных электронов к числу атомов постоянно. Это отношение сохраняет свое значение для систем со сходными структурами, независимо от стехиометрического состава. Так, например, для р-фаз (центрированный куб) систем цинк — медь, алюминий — медь и олово — медь указанные отношения равны  [c.296]

    Если сплавляемые металлы образуют несколько интерметаллических соединений, то на кривой плавкости системы наблюдается столько же максимумов, показывающих температуры плавления и состав этих соединений. Иначе говоря, термический анализ позволяет судить о числе и составе интерметаллических соединений, образующихся при сплавлении металлов. Подобные диаграммы плавкости характерны для систем магний — сурьма, медь — магний н др. [c.272]

    Металлохимия лития. По металлохимическим свойствам литий также отличен от других элементов 1А-группы. Объясняется это аномально малой плотностью, резким увеличением температуры плавления в направлении от натрия к литию, а также размерными факторами. Так, литий при сплавлении со своими групповыми аналогами (1А-группа) дает расслоение. В противоположность другим металлам 1А-группы литий не образует металлидов с металлами подгруппы меди. Литий с алюминием образует интерметаллические соединения, тогда как остальные металлы Ь -группы не смешиваются с алюминием в расплавленном состоянии. В то же время все металлы 1А-группы, включая литий, хорошо образуют амальгамы. Кроме того, однотипный характер имеет взаимодействие металлов 1 А-группы с Ga, In, Pb и Sn. [c.306]

    Водородистые соединения интерметаллического характера. Соединения этого типа образуют только металлы. Следует различать два типа соединений металлические и переходные от металлических к солеобразным. Первые из них представляют собой твердые растворы водорода в металле. Процесс растворения водорода в металле происходит с поглощением тепла. Так как водород захватывается в микроскопических щелях кристалла, то кристаллическая решетка металла частично видоизменяется. Больше всего растворяется водород в палладии соотношение атомов при этом отвечает составу Рс1Но,з9. Помимо палладия, металлические соединения с водородом образуют некоторые другие металлы железо, хром, медь, марганец и платиновые металлы. [c.97]

    Сплавы типа дуралюмина (например, марки 2017 и 2024) содержат несколько процентов меди и, вследствие выделения uAla вдоль плоскостей скольжения и границ зерен, обладают повышенной прочностью. Выше температуры гомогенизации (приблизительно 480 °С) медь находится в твердом растворе. При закалке этот раствор сохраняется. При комнатной температуре происходит медленное выделение uAlj, и сплав постепенно упрочняется. Если закалка сплава от температур, отвечающих твердому раствору, производится в кипящей воде или, если после закалки его нагреть выше 120 °С (искусственное старение), то uAla выделяется преимущественно вдоль границ зерен. В результате участки, примыкающие к интерметаллическому соединению, обедняются медью. При этом границы зерен становятся анодами по отношению к зернам, а сплав приобретает склонность к межкристаллитной коррозии. Продолжительный нагрев восстанавливает однородность состава сплава в зернах и на границах зерен и устраняет склонность к коррозии такого типа. Однако это сопровождается некоторым ухудшением механических свойств. На практике сплав закаляют примерно от 490 °С, а затем следует старение при комнатной температуре. [c.352]


    Как известно, изоморфные вещества образуют друг с другом твердые растворы — гомогенные твердые вещества сложного состава, в структуре которых атомы распределены статистически. В твердых растворах ионных соединений, металлов, полимеров атомы соединены межатомными связями. Поэтому подобные вещества являются твердыми атомными соединениями. Каждому непрерывному твердому раствору соответствует ряд однотипных твердых химических соединений, в том числе соединений, обладающих равноценными статистическими структурами, и в ряде случаев интерметаллических соединений. Например, медь и золото образуют непрерывный ряд твердых растворов, но при концентрациях золота от 20 до 70 ат. % в сплавах, полученных отжигом (т. е. выдерживанием сплава при высокой температуре), проявляются интерметаллические соединения СизАи и СиАи, имеющие строго закономерную структуру. Следовательно, твердые растворы не всегда имеют неупорядоченное строение. Эта неупорядоченность — во многих случаях результат закрепления атомов при [c.44]

    При цементации германия амальгамой цинка (тоже из солянокислых растворов) основная масса германия также выделяется в виде взвеси 1579]. В присутствии солей меди положение существенно меняется если проводить цементацию германия амальгамой цинка в присутствии ионов меди в растворе, то образуется интерметаллическое соединение uaGe, которое переходит в ртуть, образуя амальгаму [580]. Количество взвеси германия в растворе при этом уменьшается и в некоторых случаях вообще не наблюдается. Так, при цементации 20 мг германия в присутствии 100 мг меди в амальгаму перешло за 20 мин. около 80% германия. Такой же результат получен и при электролизе с катодом из амальгамы меди. Таким образом, в присутствии меди германий ведет себя также аналогично мышьяку, который, как известно, может быть выделен на катоде в виде соединений с медью. [c.218]

    Сплавы типа дюралюминия (например, 2017, 2024) содержат несколько процентов Си, и благодаря дисперсному выделению СиЛ12 вдоль плоскостей скольжения и границ зерен прочность сплава повышается. Выше температуры гомогенизации приблизительно 480 С медь находится в твердом растворе и при закалке из пего не выделяется. При комнатной температуре в металле эти соединения медленно выделяются и силав постепенно упрочняется. Если сплав будет закален в кипящей воде с температур, соответствующих области твердого раствора, или после закалки он будет нагрет (искусственно состарен) выше 120 °С, то соединение СиЛЬз будет преимущественно выделяться вдоль границ зерен. В результате этого участки, смежные с интерметаллическим соединением, обедняются медью. Это причина того, что границы зерен становятся анодны по отношению к зернам и сплав обладает заметной склонностью к межкристаллитной коррозии. Продолжительный нагрев%осстанавливает однородность состава сплава по всему зерну и склонность к межкристаллитной коррозии исчезает. При этом механические свойства несколько падают. Па практике сплав часто закаливают примерно с 490 °С с последующим старением при комнатной температуре. [c.283]

    Выводы. Заметное разделение олова и примесей происходит лишь при интенсивном перемешивании расплава в зонах. Установлено, что концентрирование сурьмы в начале и меди в конце слитка является причиной образования интерметаллических соединений олова, меди и сурьмы и снижения величины эффективных коэффициентов распределения. Предложен метод, позволяющий определять значения К в случаях откло1 ения зависимости ЛГ—Ig С от линейной. Эффективность зонной очистки олова, содержащего более 1% примесей, невысока. Производительность аппарата зонной перекристаллизации при обработке такого олова в 4 раза ниже, чем при обработке олова чистотой 99,97%. [c.62]

    Таким образом, в интерметаллическом соединении атомы меди занимают 26,3% поверхности. В дуралюмине атомы меди при равномерном распределении занимают 2% поверхности. При неравномерном распределении меди в сплаве, в том случае когда на границах зерен выделяется интерметаллическое соединение uAU, по границам зерен медь занимает 26,3%, соседние участки меди практически не содержат, и в кристаллах твердого раствора медь занимает 2% поверхности. Имея катодную поляризационную кривую для медного электрода в 3%-ном Na l (фиг. 62) и зная потенциал в этом же растворе интерметаллического соединения и дуралюмина, можно подсчитать силу тока, протекающего через медные участки в сплаве, считая в первом приближении, что катодная поляризационная кривая для меди, находящейся в сплаве, не будет сильно отличаться от подобной кривой для медного электрода. [c.74]

    Поляризационные кривые интерметаллического соединения uAU, меди и алюминия (фиг. 90) располагаются таким образом- Катодная поляризационная кривая интерметаллического соединения (5, 6) занимает самое нижнее положение, над ней проходит поляризационная кривая меди и еще выше — кривая алюминия. В этом случае ход катодной поляризационной кривой определяется двумя процессами анодным процессом растворения алюминия и катодным процессом, протекающим на участках меди. Таким образом, интерметаллическое соединение СиА1г также не может рассматриваться как самостоятельный [c.110]

    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]

    В коррозионном отно1шении интерметаллические соединения второй группы, как это было показано ранее, не являются устойчивыми электродами, но корродируют указанные соединения в растворах по-разному (фиг. 96). При коррозии алюминиевого сплава с присадкой меди в раствор переходит алюминий как из твердого раствора, так и из интерметаллического соединения. При этом коррозия алюминия из интерметаллического соединения значительно больше коррозии алюминия, находящегося в твердом растворе, так как в интерметаллическом соединении больше меди, работающе в качестве катода. [c.115]

    Олово — никель. Сплав олово — никель, содержащий 60 — 65% Зп, обладает высокой антикоррозионной стойкостью и хорошими декоративными свойствами. Этот сплав представляет собою интерметаллическое соединение (Зп—N1), которое можно получить только электролитическим способом. Электролитическое покрытие этим сплавом имеет красивый внешний вид (розовый оттенок), обладает повышенной твердостью и износостойкостью и при определенных условиях электролиза получается блестящим непосредственно из ванны без полировки. Покрытие наносится с защитнодекоративной целью на изделия из меди и ее сплавов пли из стали с медным подслоем взамен хромирования и никелирования, в некоторых случаях взамен лужения при повышенных требованиях к механическим свойствам поверхности (твердость, износостойкость), а также взамен серебрения и палладирования в производстве печатных плат. [c.437]

    Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% 81, Мп и Ре, ост. А1), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения СцА12 в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях СиА12 и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений СиА1з, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла. [c.420]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Необходимо также отметить существование четвертого класса— дисперсионно-твердеющих нержавеющих сталей, которые приобретают высокую прочность и твердость в результате низкотемпературной термообработки, проводимой после закалки с вы--сокой температуры. Эти сплавы Сг—Ре содержат меньше никеля, чем это требуется для стабилизации аустенитной фазы (или вообще его не содержат). Зато они содержат такие легирующие элементы, как алюминий или медь, которые обеспечивают высокую твердость, приводя к образованию и выделению интерметаллических соединений вдоль плоскостей скольжения или границ зерен. Эти стали применяют в тех же случаях, что и коррозионностойкие никеле- [c.297]

    Интерметаллические соединения однородны по составу и имеют четко определенные свойства и состав. Например, медь и алюминий образуют соединение СиА] , известное под названием дюралюминий . Интерметаллические соединения редко используются в чистом виде они часто распределены в гетерогенньк сплавах, подобно тому как цементит распределен в некоторьк сталях. [c.365]

    Диаграмма состояния для сплавов, образующих химические соединения. Металлы образуют друг с другом многочисленные интерметаллические соединения. Энтальпии образования подобных соединений обычно невелики лишь в некоторых случаях (например, при взаимодействии алюминия с расплавленной медью) их образование сопровождается значительным экзотермическим эффектом. Многие металлы образуют по несколько соединений друг с другом, например, Аи7п, [c.351]

    Около 200 сплавов содержат 5Ь она придает твердость свинцу и олову (хартб-лей или твердый свинец, из которого, в частности, отливают пластины для свин- цов 1х аккумуляторов, гарт — типографский сплав, невысокая температура плавления которого позволяет легко отливать литеры) сплавы сурьмы (до 15%) с оловом с добавкой свинца, а иногда меди, цинка и висмута (баббиты) обладают антифрикционными свойствами, и поэтому ими заливают подшипники скольжения. Интерметаллические соединения 5Ь со многими металлами обладают полупроводниковыми свойствами (например, для АзЗЬ ширина запрещенной зоны Д = = 1,6эВ). Добавкой сурьмы изменяют полупроводниковые характеристики германия. Тонкий порошок сурьмы — основа краски железной черни. [c.268]

    Галлий, попавший в металлический алюминий, удаляется из последнего только тогда, когда алюминий подвергают электролитическому рафинированию. Рафинируют алюминий по так называемому трехслойному методу. В качестве анода служит первичный алюминий, к которому для утяжеления добавлено 35% меди (анодный сплав — нижний слой). Средний слой — электролит, состоящий из фторидов алюминия и натрия и хлоридов бария и натрия. Состав электролита подобран так, чтобы его плотность была меньше плотности анодного сплава и больше плотности чистого расплавленного алюминия. Верхний слой (катод) — чистый алюминий ток отводится от него графити-рованными электродами. Во время работы ванны в анодный сплав непрерывно добавляют первичный алюминий так, чтобы концентрация меди оставалась постоянной. Более электроположительные элементы — медь, железо, кремний, а также галлий — не растворяются на аноде и в процессе электролиза собираются в анодном сплаве. По мере накопления примесей в анодном сплаве в загрузочном кармане, где температура ниже, из сплава выделяется твердый осадок интерметаллических соединений РеА1581, СизРеЛ1,и др., который извлекается из ванны. По мере накопления таких медистых осадков их загружают в специальную ванну, работающую так же, как и рафинировочная, для извлечения из них алюминия. В результате получается отработанный анодный сплав, содержащий 6—12% алюминия, 15—20% кремния, 12— 15% железа, 45—55% меди и 0,4—0,5% галлия, который может быть использован для извлечения галлия. [c.250]

    Индий образует интерметаллические фазы (бертоллидного типа) с некоторыми близкими металлами, такими, как олово и свинец. 1Целый ряд фаз (так называемых электронных соединений) образуется в системах с металлами подгруппы меди. Большим числом интерметаллических соединений характеризуются системы индия с магнием, никелем, редкоземельными металлами. [c.297]

    Из интерметаллических соединений таллия отметим бертоллидные фазы, образуемые с близкими к нему металлами — свинцом и висмутом, а также сравнительно тугоплавкие соединения со щелочноземельными и редкоземельными металлами, например СаТ1 или СеТ1. Большое число соединений отмечено в системах таллия с литием и натрием. В отличие от галлия и индия таллий не образует интерметаллических фаз с металлами группы меди. [c.336]

    Чистый алюминий —мягкий, ковкий и тягучий металл. Однако для некоторых целей необходимы сплавы алюминия, обладаюшие большей прочностью, вязкостью и меньшей тягучестью. Алюминиевые сплавы с такими свойствами можно получить, вводя в их состав небольшое количество других металлов, например меди или магния. Добавление примерно 4%-меди и 0,5% магния вызывает образование твердых хрупких кристаллов интерметаллического соединения Mg u2, что придает прочность алюминию. Чрезвычайно мелкие кристаллы такого состава, внедренные в кристаллы алюминия, весьма эффективно предотвраша -ют скольжение плоскостей в металлическом алюминии, в результате чего механические свойства сплава оказываются значительно выше соответствующих свойств чистого металла. [c.510]

    Фаза S имеет форму пластинки и зарождается предпочтительно на дислокациях, как и фаза в в сплаве системы А1—Си. Она по крайней мере частично не когерентна с матрицей и имеет приблизительный состав Ab uMg. Вызывает удивление, что до сих пор нет подходящей количественной оценки процессов, имеющих место во время стандартной термомеханической обработки такого широко применяемого сплава 2024. Упрощенное качественное описание термомеханической обработки этого силава можно представить следующим образом. При температуре нагрева перед закалкой большинство легирующих элементов переходит в твердый раствор. Однако марганцовистые соединения и другие интерметаллические частицы не растворяются. Эти частицы препятствуют движению границ зерен, способствуя образованию структуры с удлиненным зерном во время изготовления полуфабриката. Быстрое охлаждение с температуры под закалку приводит к пересыщению твердого раствора с почти равномерным распределением меди и магния в матрице. В этих условиях даже границы свободны от выделений, как показано на рис. 86. Если скорость охлаждения во время закалки меньше, чем 550 °С/с, то зарождение и рост фазы, обогащенной медью, может происходить по границам зерен с образованием при этом зон, обедненных медью, непосредственно прилегающих к границам зерен. [c.237]

    В качестве катализаторов применяли иикепь металлический, оксид никеля, никель азотнокислый, никель сернокислый, никель муравьинокислый, никель шавелевокислый, оксид кобальта, оксид марганца, оксид хрома, оксид железа, предварительно восстановленные водородом при температуре 500°С, промьниленные катализаторы никель-марганцевый, железо-хромовый, алюмо-никель-молибденовый, интерметаллическое соединение цирконий-никелевый гидрид ультрадисперсные оксиды металлов кобальт-никель-марганец-хром, медь-хром-марганец-кобальт, медь-хром-кобальт-1шкель-марганец, медь-кобальт-хром-железо-ннкель-марганец, а также двухкомпонентные катализаторы на основе металлов подгруппы железа. Физико-химические свойства их приведены в табл.7. [c.42]


Смотреть страницы где упоминается термин Соединения интерметаллические медью: [c.107]    [c.110]    [c.409]    [c.169]    [c.270]    [c.294]    [c.355]    [c.49]    [c.345]    [c.393]   
Интерметаллические соединения редкоземельных металлов (1974) -- [ c.61 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Интерметаллические соединени

Соединения интерметаллические



© 2024 chem21.info Реклама на сайте