Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Группа олова, разделение металлов

    Производство цветных и редких металлов. В производствах редких и благородных металлов, представляющих одну из самых молодых и одну из древнейших отраслей техники, ионообменные процессы используются не только для концентрирования и разделения металлов, но и для их перевода из одной химической формы в другую. Иониты позволяют выполнять эти операции с наименьшими потерями высокоценных металлов и лучшим образом обеспечивать требования к их чистоте. В промышленности тяжелых цветных металлов (медь, никель, кобальт, цинк, олово и др.) методы ионообменного синтеза применяются в сочетании с извлечением металлов из растворов различного происхождения поглощенные ионы обычно десорбируют в форме сульфатов, фильтраты направляют на электролитическое выделение металлов. Нередко ионообменный синтез используют и в качестве самостоятельного приема — при получении соединений этих металлов как продуктов. Во втором разделе приведены конкретные примеры, охватывающие почти все элементы этой обширной группы. [c.111]


    Разделение элементов на группы в зависимости от растворимости их сульфидов широко применяется в качественном анализе. Подобные же методы нередко применяются и в количественном анализе, в частности, для отделения меди, висмута, олова и других металлов от железа. [c.93]

    Неорганические иониты. Природными катионитами являются силикаты (например, цеолиты), в решетке которых часть атомов кремния 3102-решетки заменена атомами алюминия. Каждый встроенный атом алюминия обусловливает возникновение отрицательного заряда, который компенсируется катионами. Представителями этой группы являются также глауконит, бентонит и глинистые минералы. В качестве анионитов применяют апатит. Силикаты, обладающие ионообменными свойствами, получают также синтетическим путем (плавленый пермутит, осажденный пермутит). Для специальных разделений, например для разделения щелочных и щелочноземельных металлов, а также для разделения радиоактивных веществ применяют, например, гидратированные окислы циркония и олова [39], аммонийные соли гетерополикислот [40, 41] и гексацианоферраты [42]. С недостатками неорганических ионитов приходится мириться, используя такие их достоинства, как низкая чувствительность к действию температуры, твердость и однородность структуры и нечувствительность к действию радиоактивного излучения. [c.371]

    Аналитические сведения. Как переходный элемент между неметаллами и металлами V группы мышьяк обладает характерными признаками тех и других. Это отражается и на его аналитической характеристике. Его находят как при испытании анализируемого вещества на кислоты так и в ходе разделения на катионы. С нитратом серебра соединения мышьяка образуют желтый осадок арсенита или шоколадно-коричневый осадок арсената. Сероводород осаждает мышьяк в виде лимонно-желтого сульфида при этом полное осаждение пятивалентного мышьяка возможно-из очень сильно кислого раствора. Сульфид мышьяка легко растворяется в сернистом аммонии, а также в отличие от сульфидов сурьмы и олова — в карбонате аммония, но не растворяется в концентрированной соляной кислоте. [c.712]

    Этим методом могут быть получены органические соединения большинства металлов I—IV групп, за исключением переходных элементов и, очевидно, таких немногих элементов, как бор и углерод (см. специальные разделы в соответствующих главах). Это лучший метод получения органических производных щелочных металлов, магния, кальция, стронция и бария, особенно в том случае, если эти соединения используются как промежуточные продукты в дальнейших синтезах и не требуется их выделения в чистом виде. Если необходимо выделить чистые алкильные пройзводные щелочных металлов, то этот метод не является единственным, так как в органических растворителях нерастворимы как металлалкилы, так и галогениды металлов, являющиеся побочными продуктами реакции, и разделение их практически невозможно. Этот метод можно использовать для приготовления органических производных алюминия при условии, что алюминий предварительно амальгамируется для удаления поверхностной окисной пленки. Аналогичным образом могут реагировать в виде амальгам и другие металлы, например олово и свинец. [c.62]


    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    Очень интересно использование тиокомплексов металлов II аналитической группы для разделения этих металлов на анионитах [98]. Соответствующую методику можно с успехом применять для анализа сплава, полученного сплавлением пробы со смесью карбоната калия и серы. В результате такого сплавления мышьяк, сурьма и олово образуют соли соответствующих тиокислот. [c.292]

    Разделение металлов групп меди и олова. Прежде чем подвергнуть Оц обработке КОН или (NHJ)2Sn (см. ниже), целесообразно сделать предварительное испытание с малым количеством 0,р чтобы установить, необходимо ли разделение. Если при этом все растворится, значит присутствует только // и главная часть может быть обработана прямо по 37 (стр. 164). Если останется остаток, его отфильтровывают и фильтрат подкисляют НС2Н3О2. При зтом, если присутствует 1] образуется хлопьевидный окрашенный осадок. Надо иметь в виду, что сам полисульфид дает при подкислении молочнообразное выделение серы вследствие реакции  [c.160]

    Нередко металлы по величинам коэффициентов разделения изотопов подразделяют па две группы металлы с малыми величинами Р (свинец, ртуть, олово) и металлы с большими величинами Р (никель, железо, платина и др). Однако, в литературе не известны соотношения, устанавливающие количественную связь между величит1ами Р и величинами, характеризую щими природу металла электрода. Между тем учитывая факт различных значений перенапряжения водорода и дейтерия, следует ожидать наличие определенной связи между величинами Р и природой металла. [c.125]

    Систематическое распределение элементов подвергалось в и( тории нашей науки многим разнообразным препратностям. Наиболее распространенное разделение их па металлы и металлоиды опирается как иа физические различия, замечаемые между многими простыми телами, так и на различия в характере окислов и соответственных им соединений. Но то, что казалось при первом зпакомстве с предметом, ясным и абсолютным, то при ближайшем знакомстве с ним совершенно потеряло свое значение. С тех пор как стало известным, что в одной группе находятся и металлы (В1, ЗЬ) п металлоиды (N5 Р) и даже, что один э юмеит, как наир, фосфор, может являться и в состоянии металлоида, и в металлическом виде, стало невозможным опираться на различия в физических признаках. Образование основных и кислотных окислов пе представляет также ручательства сколько-либо точного, по той причине, что между резко основными и кислотными окислами существует ряд окислов переходных, куда папр. доллгно отнести окислы [висмута] В , [сурьмы] ЗЬ, [мышьяка] Аз, [золота] Аи, [платины] Р1, [титана] Т , [бора] В, [олова] 8п и многих других. [Притом аналогия соединений таких металлов, как висмут В1, ванадий V, сурьма 8Ь, и мышьяк с соединениями фосфора и азота теллура с селеном и серой также как кремния, титана и циркона с оловом, не позволяет уже ныне строго держаться, в разделении простых тел, различия между металлами и металлоидами.] Исследования металлооргаиических соединений, показавшие, что сера, фосфор п мышьяк образуют соединения совершенно [c.311]


    Для разделения металлов платиновой группы (в виде хлорокомплексов) эффективны различные ионообменные методы. Кроме того, ионообменные смолы можно использовать для отделения небольших количеств платины (и других металлов платиновой группы) от основных металлов. Описано отделение платины от палладия, родия и иридия при помощи анионообменных смол амберлит ША-400 . Платину можно отделить от больших количеств железа, никеля и меди при помощи катионообменных смол (дауэкс-50) хлороплатннаты(1У) [и хлоропалладиты(П)] проходят через колонку . Небольшие количества основных металлов сопутствуют металлам платиновой группы. Без сомнения, лучшее разделение можно получить при помощи осадительного метода, применяя теллур и хлорид олова(П) (см. 1А). [c.651]

    Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запрещенными зонами. Если электроны образуют в атомах или моле1<улах законченную группу, то прн образовании из них твердого или жидкого вешества созда ются зоны с полностью заполненными уровнями, поэте му такие вещества при абсолютном нуле имеют свойства изоляторов. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, а-олова, соединений тяпа А" В , А В , Si каждый атом связан единичными ковалентными связями с четырьмя ближайпгими соседними, так что вокруг него образуется законченная группа электронов s p и валентная зона оказывается заполненной. Необходимо подчеркнуть, что полупроводники и диэлектрики отличаются от Металлов тем, что валентная зона у них при Гл О К всегда полностью заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний. Ширина запрещенной зоны АЕ у полупроводников — от десятых долей до 3 эВ (условно), а у диэлектриков — то 3 до 5 эВ (условно). Если между полупроводниками и диэлектриками имеется только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в металле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 71, а). [c.292]

    Разделение обработкой сульфидом щелочного металла. Отделить элементы сероводородной группы, не образующие растворимых сульфо-анионов, можно либо обработкой всей осажденной группы растворой сульфида щелочного металла, либо осаждением сульфид-ионами в щелочном растворе. Последнее значительно лучЩе, потому что полное растворение многих осажденных сульфидов (например, сульфидов селена, теллура и молибдена) обработкой раствором сульфида щелочного металла происходит с трудом и часто даже невозможно. Способ, каким проводят осаждение сульфид-ионами в щелочном растворе, зависит от растворимости осадка в таком растворе. Если практически все растворяется, как, например, составные части нечистого молибдена в аммиаке или продажного олова в растворе едкого натра, то осаждение лучше всего проводить, обрабатывая щелочной анализируемый раствор сероводородом или сульфидом щелочного металла. Если же большая часть сульфидов не растворяется, как, например, компоненты броцзы при обработке едким натром, то тогда лучше прилить слабокислый анализируемый раствор к раствору сульфида щелочного металла, взятому в избытке. Употребления растворов полисульфидов следует избегать, кроме тех случаев, когда нет лучшего способа разделения (например, длд выделения сульфида ртзпи приходится пользоваться полисульфидом аммония). Применение нолисульфи-дов не является необходимым, если элементы, образующие сульфосоли, находятся в состоянии их высшей валентности. [c.93]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Интересно отметить, что коэфициенты разделения дейтеро-водород-ной смеси на разных металлах распадаются примерно на те же две группы, что и для перенапряжения. На металлах с низким перенапряжением, как, например, платина, никель и серебро, коэфициент разделения составляет около 6, в то время как на электродах с большим перенапряжением, например на свинце (в кислом растворе), ртути и олове, эти значения лежат около 3 [ ]. Последняя цифра близка к ожидаемому значению коэфициента разделения для случая, когда на катоде устанавливается расновесие [c.563]

    Отсюда, в зависимости от разности молекулярных весов, разделение МОС одного элемента, отличающихся видом лиганда, будет идти труднее, чем разделение МОС, отличающихся комплексо-образователем, или металлом. В табл. 5 приведены значения коэффициентов разделения для наиболее вероятных примесей в алкильных соединениях индия, олова и галлия. Из этой таблицы видно, что коэффициент термодинамической активности близок к единице не только у систем, образованных металлоорганическими соединениями элементов одной группы, но и элементов соседних групп. Для металлоорганических соединений алюминия коэффициент активности отличается от единицы, что объясняется их ассоциацией. Таким образом, коэффициент разделения будет также определяться разностью в молекулярных весах МОС. Трудность разделения алкильных металлоорганических соединений элементов IV и V групп состоит в том, что трехвалентное состояние элементов V группы приводит к выравниванию молекулярного веса и уменьшению коэффициента разделения. Например, из-за близости в молекулярных весах тетрабутилолово плохо отделяется ректификацией от трибути.тсурьмы [19]. [c.138]

    Разделение ионов пятой группы основано на том, что сульфиды мышьяка и молибдена не растворяются в концентрированной НС1, а сульфиды олова и сурьмы растворяются. Олово и сурьму затем можно разделить металлическим железом, которое восста навливает сурьму из раствора до металла, а олово (IV) восстанав ливается только до олова (II), и поэтому олово остается в растворе [c.523]

    Выделение золота пробирно-купеляционными методами из руд и концентратов вместе с металлами платиновой группы описано в разделе 1У1етоды выделения и разделения платиновых металлов . Фей и Инман [17] предложили пробирный метод выделения золота с использованием олова в качестве коллектора. После растворения плава золото отделяют экстракцией эфиром его хлоридного комплекса. [c.176]


Смотреть страницы где упоминается термин Группа олова, разделение металлов: [c.133]    [c.187]    [c.367]    [c.133]   
Химико-технические методы исследования Том 1 (0) -- [ c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы олово

Разделение на группы



© 2025 chem21.info Реклама на сайте