Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники химическая связь

    При подготовке 4-го издания книга не подверглась значительному изменению. В некоторой степени переработано изложение материала, относящегося к природе химической связи в молекулах и кристаллах, рассмотрена донорно-акцепторная связь. Дополнен материал, относящийся к свойствам твердых тел, введены представления о зонной теории металлов и полупроводников. Расширено изложение особенностей свойств газов, кристаллов при очень высоких температурах. Рассмотрены некоторые процессы при очень низких температурах (сверхпроводимость и др.). Расширен материал, посвященный внутреннему строению и свойствам воды в различных состояниях и процессам замерзания ее введено представление о релаксационном характере процессов, связанных с достижением равновесного состояния воды при изменившихся внешних условиях [c.12]


    Проблема гетерогенно-каталитического акта является проблемой химического взаимодействия между реагирующими молекулами и взаимодействия их с поверхностью твердой фазы. Поэтому вопросы гетерогенного катализа должны решаться на основе квантовой теории химической связи и, в частности, на базе теории молекулярных орбиталей. Одновременно необходимо изучать свойства молекул, находящихся на поверхности твердой фазы. Это требует привлечения современных представлений о строении металлов и полупроводников. [c.660]

    Кристаллы. Основные структурные типы кристаллических веществ. Типы химической связи а кристаллах. Зонная теория кристаллов. Дефекты в кристаллах, Нестехиометрические соединения. Полупроводники. Твердые растворы. [c.88]

    Изменение структуры в ряду С—РЬ соответствует изменению их физических свойств. Кремний, германий и а-олово — полупроводники, а (3-олово и свинец — металлы. Изменение типа химической связи в ряду С (алмаз) — РЬ от ковалентной до металлической сопровождается понижением твердости веществ. Алмаз — самый твердый из всех простых веществ, довольно твердые и хрупкие кремний и германий, свинец же легко прокатывается в топкие листы. [c.188]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]

    Изменение структуры простых веществ в ряду Ое — 8п — РЬ соответствует изменению их физических свойств. Так, германий (А =0,78 эв) и а-олово (А =0,08 эв) — полупроводники, а Р-олово и свинец — металлы. Изменение типа химической связи от преимущественно ковалентной к металлической сопровождается понижением твердости простых веществ. Так, германий довольно тверд и хрупок, свинец же легко прокатывается в тонкие листы. [c.483]


    По способности проводить электрический ток вещества делятся на проводники, полупроводники и изоляторы (диэлектрики). Такое деление довольно условно. Нет веществ, абсолютно не способных проводить электрический ток, и иногда трудно отнести вещество к тому или иному классу. Электропроводимость зависит от температуры, давления, чистоты вещества (содержание примесей), кристаллической структуры (ср., например, алмаз и графит, белое и серое олово), характера химических связей и других факторов. [c.179]

    Книга рассчитана на широкий круг химиков и физиков — научных работников, преподавателей вузов, аспирантов и студентов старших курсов, занимающихся квантовой химией или химической связью в твердых телах. Она может быть также использована как учебное пособие при изучении курсов химическая связь и строение молекул , химия твердого тела , физическая химия полупроводников . и т. п. [c.304]

    Электроны, обусловливающие проводимость металлов и полупроводников, делокализованы — они могут находиться около любого атома в кристалле. Поэтому в данном случае при.меним подход, использованный ранее при рассмотрении делокализованных химических связей.. [c.271]

    Если же примесью являются атомы элементов третьей группы периодической системы (индий, галий, бор и др.), в которых на один валентный электрон меньше, чем у германия, то химическая связь между атомом германия и атомом примеси становится незавершенной из-за отсутствия одного электрона. В этом случае на месте недостающего электрона возникает дырка, следовательно, в таком полупроводнике будет преобладать дырочная проводимость, возникает р-полу-проводник. [c.95]

    Энергия кристаллической решетки в кристаллах этого типа фактически совпадает с энергией химической связи и лежит в пределах 200—500 кДж/моль. Так, энергия кристаллической решетки алмаза составляет 480 кДж/моль. Вследствие столь высокой энергии связи ковалентные кристаллы обладают высокими твердостью, температурами кипения и плавления. Диапазон их электропроводящих свойств велик от типичных диэлектриков (алмаз, нитрид бора, кварц) до полупроводников (кремний, германий) и даже электронных проводников (олово). [c.77]

    Твердые фазы немолекулярной структуры представляют собой твердые тела с координационной структурой (металлы, полупроводники и диэлектрики). Химическая связь в них имеет свои особенности и описывается с позиций так называемой зонной теории. Для металлов зонной теории предшествовала модель свободных электронов. [c.129]

    Теория полупроводников является составной частью физики твердого тела, которая сформировалась на базе квантовой механики, статистической физики и термодинамики. Основные свойства полупроводников могут быть правильно поняты только в свете этих наук. Без этого изложение теории полупроводников свелось бы к простому перечислению экспериментальных данных. Большая часть современной литературы по полупроводникам требует от читателя достаточно глубоких знаний перечисленных наук. Данная книга рассчитана на читателя, предварительная подготовка которого ограничивается изучением курсов общей физики и химии и начал высшей математики в объеме, предусмотренном программами для средних учебных заведений. В связи с этим первые две главы книги посвящены вопросам термодинамического равновесия, различимости и неразличимости микрочастиц, скоростей молекулярных процессов, а также природы химической связи и кристаллического строения твердого тела. [c.5]

    Зонная модель и понятие о полупроводниках. В современной физике широкое распространение получила так называемая зонная теория. Для этой теории характерна следующая терминология. Система электронов, образующих невозбужденные химические связи, называется валентной зоной, а система возбужденных связей — зоной проводимости. Двойные ненасыщенные связи в валентной зоне получили название дырок, а электроны зоны проводимости часто называются свободными. [c.77]

    Все или большая часть валентных электронов металла образуют ненасыщенные химические связи (см. 7). В этом смысле валентные электроны металла подобны электронам в зоне проводимости полупроводника и отсюда понятно, что большинство металлов по данным эффекта Холла обладают электропроводностью/г типа. Поэтому, электрохимический потенциал электронов в металле может быть записан следующим образом  [c.169]

    Химические связи между поверхностными атомами ие являются равнозначными. Часть этих связей, направленная в глубь кристалла, имеет примерно такие же геометрические (угол, длина) и физические (энергия) свойства, что и в объеме связи же, направленные в сторону внешней среды, либо двойные и расположены под другим углом, либо вообще разорваны . Высвобождение валентных электронов и перевод их в зону проводимости требует в данном случае различной затраты энергии в зависимости от того, какая связь поверхностного атома будет при этом разрушаться. Согласно зонной теории сказанное означает, что электроны могут поступать в зону проводимости данного кристалла как из валентной зоны, так и с более высоких уровней, соответствующих разрыву менее прочной поверхностной связи. Вспоминая, что точно такие же уровни в объеме кристалла могут быть получены путем введения легирующих примесей, мы приходим к выводу, что совершенно чистая поверхность кристалла обладает примерно такими же электрическими свойствами, как объем примесного полупроводника. [c.205]


    В металлических кристаллах запрещенная зона отсутствует из-за перекрывания валентной зоны и зоны проводимости (рис. 28, в), так как металлические кристаллы образованы элементами, у которых число валентных электронов мало по сравнению с числом вакантных орбиталей. Вследствие этого в кристаллической решетке металла осуществляются нелокализованные химические связи. Благодаря свободному перемещению электронов по всему объему кристалла металлы имеют высокую электрическую проводимость. В отличие от полупроводников электрическая проводимость металлов понижается с повышением температуры. Однако и в жидком (расплавленном) состоянии металлы проводят электрический ток. [c.75]

    Строгое и последовательное приложение ММО к металлам приводит к зонной структуре энергетического спектра электронов в них. В действительности металлы характеризуются не столько металлической связью, сколько металлическим типом зонной структуры, в которой отсутствует запрещенная зона. Причем с позиций -Мо ЛКАО можно трактовать особенности химической связи не только в металлах, но и в полупроводниках и диэлектриках, хотя еще недавно теория строения этих веществ считалась областью фи- [c.128]

    Влияние примесей на проводимость полупроводников. Внедрение в кристалл полупроводника атома примеси вызывает изменение его электрических свойств. Это изменение электрических свойств вызвано нарушением химических связей между атомами матрицы (51, Ое) и атомом примесей. [c.432]

    Особенности химической связи в полупроводниках. [c.253]

    Металлическая связь представляет собой взаимодействие ионов с электронным газом в конденсированной фазе—жидкости или кристалле. В отличие от химической связи число частиц, непосредственно взаимодействующих друг с другом, здесь очень велико. В принципе каждый из электронов связан со всеми ионами, имеющимися в жидкости. Такая связь наблюдается в жидких металлах и отчасти в полупроводниках. [c.11]

    При повышении температуры а-олово, представляющее собой полупроводник со структурой алмаза, переходит в металлическое белое олово, обладающее объемноцентрированной тетрагональной структурой. Сложные кубические структуры а- и Р-марганца, сложные структуры а- и Р-урана и нептуния, а-, р- и -плутония, имеющие отчетливо выраженные локализованные химические связи между атомами, переходят в ОЦК структуру, типичную для металлов причем у марганца и плутония этому переходу предшествует превращение в гранецентрированную кубическую (ГЦК) модификацию. У большинства полиморфных металлов низкотемпературная а-модификация имеет плотную [c.173]

    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    В полупроводниках с ковалентной химической связью появление электрона в зоне проводимости одновременно создает его вакансию в валентной зоне. Данная вакансия на конкретной молекулярной орбитали может заполняться электронами других занятых близлежащих МО. Такой переход электронов внутри валентной зоны как бы создает движение вакансии с одной МО на другую МО. Такие вакансии называются дырками. Поэтому электрический ток в полупроводнике определяется движением электронов в зоне проводимости и движением электронов в валентной зоне. В первом случае электроны переходят на незанятые МО, во втором — на частично занятые МО. В силу того, что энергии МО в зоне проводимости и валентной зоне отличаются, то и подвижности электронов в этих зонах также отличаются. Движение электронов в валентной зоне часто описывают как движение дырок, но в противоположном направлении. В электрическом поле такие дырки ведут себя как положительные электрические заряды. Проводимость полупроводника определяется как сумма его электронной и. дырочной проводимости. Это значит, что перенос тока в полупроводниках может осуществляться как электронами зоны проводимости (п-проводимость, от латинского negative — отрицательный), так и дырками валентной зоны (р-проводи.мость, от латинского positive — положительный). [c.636]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Книга посвящена новой и актуальной области науки — теории химической связи в твердых телах, которая впервые трактуется как один из разделов общей квантовой химии. В ней рассматривается влияние характера химической связи на особенности электронной (зонной) структуры и прослежены налогии между химической связью в молекулах и твердых телах. Дано краткое изложение основ квантовой химии и зонной теории твердого тела, рассмотрен характер химической связи и электронное строение для простейших типов твердых тел- ковалентных кристаллов элементов IV группы и других полупроводников. [c.304]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Галлий и индий образуют с р-элементами V группы периодической системы бинарные соединения типа А" (например, ОаР, ОаАз, 1п5Ь и др.). В преобладающем большинстве соединений типа А" В электронные орбитали р -гибридизованны кристаллические решетки этих соединений имеют структуру, характеризующуюся тетраэдрическим расположением химических связей. Многие из этих алмазоподобных соединений — полупроводники. Их используют как материал для выпрямителей переменного тока, датчиков, термоэлектрических генераторов и др. [c.270]

    Электропроводность полупроводников и диэлектриков возникает за счет образования возбуждет1ых химических связей. [c.83]

    Химическая связь в металлидах преимущественно металлическая. По внешнему виду они похожи на металлы. Твердость металлидов, как правило, выше, а пластичность намного ниже, чем у образующих их металлов. Многне метал-лиды нашли практическое применение. Например, А15Ь, 1пЗЬ и др. ширс ко используются как полупроводники. [c.154]

    Синтез полимеров перцианэтилена может быть осуществлен на поверхности металла, для чего металлическое изделие покрывают пленкой полимера, образующего химические связи с металлом. Такие полимеры не горят, обладают высокой термостойкостью и выдерживают длительное нагревание при 500 °С они являются полупроводниками и отличаются высокой химической стойкостью и магнитной восприимчивостью. [c.430]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Продукты взаимодействия металлов подгруппы хрома с кремнием по формульному составу и структурным особенностям во многом напоминают пниктогениды. Для всех трех элементов существуют дисилициды 3S 2, представляющие собой тугоплавкие соединения., обладающие полупроводниковыми свойствами. Дисилициды устойчивы к агрессивным средам при повышенных температурах. Существование низших силицидов для вольфрама и молибдена точно не установлено. Напротив, в системе Сг—Si установлено существование соединений rSi, raSi, rgSi, первое из которых является вырожденным полупроводником, а два других — металлиды. Таким образом, в ряду силицидов хрома наблюдается та же закономерность, что была отмечена для фосфидов с увеличением атомной доли анионообразователя наблюдается переход от металлических свойств к полупроводниковым, что обусловлено изменением характера химической связи путем замены катион-катионных связей у низших силицидов на анион-анионные у высших. [c.346]

    Характер химической связи и особенности сруктуры свидетельствуют о возможности появления у неорганических полимеров полупроводимости (гл. IX, . 5). Действительно, из перечисленных полимеров полупроводниками являются селен, теллур, некоторые модификации фосфора и мышьяка (гл. XI, 5 и 6). [c.393]

    Химические связи в соединениях углерода, кремния, германия, олова (IV) и свинца (IV) носят ковалентный или преимущественнсг ковалентный характер, а в соединениях Sn(II) и РЬ(И) — смешанный пли преимущественно попиый. Олово и свинец — менее типичные и менее активные металлы, чем металлы IA-, IIA-, ША-групп, германий — полупроводник. [c.217]

    Полупроводники и изоляторы. Известно, что каждый атом кремния тетраэдрически окружен другими атомами. Его кристаллическая структура напоминает структуру алмаза. Каждый атом кремния связан четырьмя равноценными связями с такими же атомами. Химические связи осуществляются гибридными орбиталями 5р -типа. [c.131]


Смотреть страницы где упоминается термин Полупроводники химическая связь: [c.215]    [c.18]    [c.503]    [c.9]    [c.107]    [c.63]    [c.52]    [c.195]    [c.4]   
Введение в химию полупроводников Издание 2 (1975) -- [ c.37 , c.40 , c.46 , c.48 , c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте