Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность изоляторов

    Диэлектрики отличаются очень высоким удельным сопротивлением (р>10 Ом-м), поэтому они способны длительное время сохранять электрическое поле. Если диэлектрик (изолятор) оказывается во внешнем электрическом поле с напряженностью Ец, то в результате поляризации в нем возникает собственное электрическое поле напряженностью Е, численное значение которого равно = o/s, где в — диэлектрическая проницаемость. Электропроводность изоляторов имеет ионную природу, с повьппением температуры она увеличивается. [c.80]


    Классическим исследованием электрических свойств кварца является диссертация Ж. Кюри [78]. Здесь разработан метод измерения электропроводности изоляторов, которым я и пользовался в настоящей работе, и установлены главнейшие свойства кварца. Все факты, найденные Ж. Кюри, вполне подтверждаются настоящим исследованием, и только толкование этих фактов существенно расходится со взглядами, высказанными Кюри. [c.82]

    Ни одно из физических свойств твердых тел не изменяется в таких щироких пределах, как электропроводность. Удельная электропроводность изоляторов при комнатной температуре находится в пределах примерно от 10 до 10- , полупроводников — примерно от 10 до 10 удельная электропроводность проводников (металлов) составляет около 10 Ом -см .  [c.283]

    В которых электроны связаны с отдельными атомами, так как электронные волновые функции простираются на значительно большие расстояния, чем расстояния между атомами (квантовомеханический туннельный эффект). Вычисления показывают, что наличием самых больших барьеров потенциальной энергии, соответствующих атомам с наибольшими потенциалами ионизации, можно объяснить понижение электропроводности по сравнению с моделью свободного электрона только на 10 . В действительности экспериментальные значения электропроводности изоляторов в 10 раз меньше, чем у металлов. [c.98]

    Электропроводность изоляторов уменьшается с понижением температуры. Хладо-агенты являются хорошими изоляторами. У полупроводников электропроводность также уменьшается с понижением температуры. [c.134]

    Полупроводниковые термометры сопротивления. Ряд полупроводниковых материалов обладает ценными термометрическими свойствами. Полупроводник можно определить как материал, электропроводность которого значительно ниже электропроводности металлического проводника, но гораздо выше, чем электропроводность изолятора. В настоящее время выпускается для продажи несколько типов полупроводниковых термометров сопротивления из [c.154]

    Чистые нефтепродукты — плохие проводники электрического тока, поэтому их применяют в качестве электроизолирующих материалов для кабелей, трансформаторов и т. д. Электропроводность жидких нефтепродуктов зависит от содержания влаги, посторонних примесей, а также от температуры. Чистые углеводороды и сухие нефтепродукты (парафин) обладают электропроводностью от 2-10 до 0,3-10 1/(0Л4 СЛ4). Из-за малой электропроводности парафин широко применяют в качестве изоляторов в радиотехнике. [c.93]

    Попадание нагара на электроды и изоляторы свечей приводит к нарушению нормальной работы свечей зажигания. Особенно ярко это наблюдается в случае применения бензинов, содержащих металлоорганические антидетонаторы, так как здесь нагары имеют повышенную электропроводность. В частности, одним из наиболее существенных недостатков нового марганцевого антидетонатора является нарушение работы свечей зажигания. [c.268]


    Катализ второго класса — ионный — протекает ца твердых телах, не имеющих свободных носителей тока в объеме, т. е. на изоляторах. Электропроводность этих тел, заметная при высоких температурах, — ионная, аналогичная электропроводности электролитов. Катализаторы этого типа, как правило, не окрашены реакции происходят без разделения электронных пар и объединяются в тип гетеролитических. Сюда относятся реакции изомеризации, присоединения (гидратации, аминирования), замещения гидролиза), дезаминирования. Указанные два класса каталитических реакций не включают в себя, однако, всех возможных механизмов катализа. [c.13]

    В эмульсиях В/М, где электропроводность дисперсной фазы выше, чем непрерывной среды, заряды о возникают внутри частиц (рис. У.55, стадия В). Так как сферические частицы сохраняются изолированными благодаря окружению масляной фазы, которая вообще является эффективным изолятором, заряды о не способны перейти из сфер в масляную фазу. [c.386]

    Известно, что органические неэлектролиты подчиняются уравнению Аррениуса для электропроводности [67-69]. Причем, вещества с шириной запрещенной зоны ЛЕ > 2 эВ условно относят к изоляторам, вещества с Д Е << I эВ - к органическим металлам, с промежуточными значениями 4 Е - к полупроводникам. [c.32]

    В то же время, с увеличением температуры растет упругость паров и соответственно повышается давление в аппаратах, резко увеличивается расход электроэнергии в электродегидраторах вследствие повышения электропроводности нефти, значительно усложняются работы проходных и подвесных изоляторов. Кроме того, повышение температуры влечет за собой дополнительные затраты на охлаждение дренируемой из электродегидраторов воды перед ее сбросом в канализацию. Для каждой нефти, в зависимости от ее свойств, имеется определенный технологический и технико-экономический оптимум температуры обессоливания. [c.47]

    Металлическая проводимость возникает при наличии частично занятых электронами энергетических зон, в пределах которых электроны обладают высокой подвижностью. В непроводящих веществах (изоляторах) имеются полностью заполненные энергетические зоны, отделенные от свободных энергетических зон широкой запрещенной зоной (рис. А.26). У полупроводников ширина запрещенной зоны мала, так что уже при подводе тепловой энергии электроны могут переходить в более высоколежащие зоны. Поэтому в противоположность веществам с металлической проводимостью у полупроводников повышение температуры вызывает увеличение электропроводности. Тот же эффект может наблюдаться при воздействии световой энергии. Это объясняет фотопроводимость у селена. [c.360]

    Вследствие малой электропроводности парафин стал незаменимым изолятором в радиотехнике. [c.148]

    При условиях температуры и давления, близких к обычным, полу проводники по величине электропроводности занимают промежуточ ное положение между металлами и диэлектриками (изоляторами) Так, металлы (проводники первого рода) характеризуются электри ческой проводимостью, лежащей в границах 10 - 10  [c.452]

    Современная теория твердого тела развивается на базе квантовой механики и статистической физики, которые позволяют связать структуру и свойства твердого тела с силами взаимодействия между частицами. Теория твердого тела позволяет определить энергию кристаллической решетки, теплоемкость твердых тел и их оптические свойства, объяснить различие между металлами, изоляторами и полупроводниками, охарактеризовать электропроводность этих тел. [c.172]

    Металлам свойственна высокая электропроводность при всех температурах, начиная с абсолютного нуля. Полупроводники занимают промежуточное положение между металлами и изоляторами. Электропроводность их при Т = О является нулевой однако с повышением температуры она быстро возрастает и при некоторых условиях может приближаться к электропроводности металлов. [c.183]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]


    Полупроводники имеют такую же зонную структуру как изоляторы, и при 7 = 0 К ведут себя точно так же, т. е. не проводят электрический ток. Однако ширина запрещенной зоны у них относительно невелика, и при тепловом возбуждении заметное число электронов попадает из заполненной валентной зоны в пустую до этого (при О К) зону проводимости (см. рис. 7.6, в). При повышении температуры число таких электронов и как следствие электропроводность увеличиваются. Типичными полупроводниками являются упоминавшиеся выше кремний, германий, серое олово, имеющие структуру алмаза, но узкую запрещенную зону. [c.137]

    В полупроводнике, представляющем собой химическое соединение, свободных носителей тока нет. Только тепловое движение, поглощение света или другие энергетические факторы приводят к возбуждению электронов и делают вещество проводником электричества. Тепловое движение ослабевает с понижением температуры, соответственно убывает и электропроводность полупроводников, падая до нуля. При достаточно низкой температуре полупроводник становится изолятором, и резкой границы между ними нет. В то же время металл нельзя превратить в проводники другого типа термической обработкой. [c.160]

    По электропроводности тока все вещества делят на проводники, полупроводники и изоляторы (диэлектрики). [c.256]

    Двухвалентные атомы, образуя зону в металле, предоставляют для ее заполнения 2Л л электронов. Следовательно, зона будет целиком заполнена. Можно было бы предполагать, что в результате полного заполнения зоны электропроводность будет отсутствовать и, следовательно, будет образовываться изолятор. Однако из-за близости заполненного, например, 25-уровня (например в бериллии) к 2р-уровню соответствующие две зоны будут пересекаться, следовательно, возникнет электропроводность. [c.351]

    В группе 1УБ разница между свойствами первого и последнего членов группы максимальна. От неметаллических элементов—углерода и кремния, через германий — металлоид, с промежуточными свойствами, происходит переход к олову и свинцу, которые являются металлами. Углерод и кремний имеют ковалентную макромолекулярную структуру. Углерод (исключая графит) является изолятором. Кремний и германий обладают полупроводниковыми свойствами. Олово и свинец, имея металлическую структуру, электропроводны, кроме а-олова со структурой типа алмаза. [c.504]

    При эксплуатации электролизеров возможно поражение обслуживающего персонала электрическим током, особенно при повышенных напряжениях постоянного тока, применяемых в настоящее время в процессе электролиза. В отделении электролиза из-за возможности увлажнения полов и оборудования растворами электролитов может возникнуть опасность поражения электрическим током. Для предотвращения этого предусматривают электрическую изоляцию от земли электролизеров, их деталей, ошиновки и примыкающих непосредственно к электролизерам трубопроводов. Поскольку при эксплуатации электролизеров с увлажненными и загрязненными электропроводными веществами поверхностями изоляторов качество изоляции может ухудшиться, необходимо систематически промывать и очищать изоляторы. [c.132]

    Почти любая пыль тонко измельченного органического материала, а также многих металлов взрывоопасна, поскольку, как мы видели, природа электризации частиц такова, что образование зарядов предотвратить нельзя. К счастью, во многих типах установок имеют место лишь небольшие перемещения твердой фазы, к тому же взвесь оказывается настолько электропроводной, что обеспечивается эффективная разрядка частиц. Даже очень незначительной влажности часто достаточно для того,-чтобы по хорошим изоляторам происходила утечка зарядов. Однако следует отметить, "Что степень влияния этого полезного следствия влажности среды может меняться в зависимости от рабочих условий. Например, изменение относительной влажности со 100 до 40% может увеличить [58] поверхностное сопротивление стекла в 6-Ю6 раз. Заземление [59] всех элементов установки, безусловно, предотвращает мощные внешние разряды. Однако эта мера не исключает электризацию частиц внутри установки, и, следовательно, опасность внутренних взрывов сохраняется. Поэтому нельзя забывать о необходимости изучения закономерностей взрыва во взвесях. К сожалению, наши знания по этому вопросу все еще весьма ограниченны. Существенно больше известно [60, 61] о [c.311]

    Электрический генератор или аккумулятор заставляет электроны направляться к катоду и удаляться от анода. Электроны свободно передвигаются в металлическом или в полуметаллическом проводнике, каким является графит. Однако электроны не могут просто перейти в такое вещество, как соль кристаллическое вещество является изолятором, и электропроводность расплавленной соли не является электронной проводимостью (металлической проводимостью) это проводимость иного рода, называемая ионной или электролитической проводимостью. Она обусловливается движением ионов в жидкости катионы Ка+ движутся к отрицательно заряженному катоду, а анионы С1- передвигаются в направлении положительно заряженного анода (рис. 11.1). [c.305]

    Окислы металлов обычно относят к классу полупроводников и их электропроводность лежит между электропроводностью изоляторов и металлических проводников. Проводимость окислов возрастает при небольшом отклонении от стехиометрического соотношения между металлом и кислородом в окисле и с увеличением температуры. Существуют два типа пол у проводящих окислов р и п (р — переносчик положительного электричества, п — переносчик отрицательного электричества). У типа р отклонение от стехиометрического состава проявляется в виде отсутствия определенного количества ионов металла в кристаллической решетке окисла. Оставшиеся незаполненными узлы решетки называются катионными вакансиями и обозначаются . Для поддержания окисла в электронейтральиом состоянии в нем образуется эквивалентное количество положительных дырок 0, т. е. мест с недостачей электронов. Ион двухвалентной меди Си в решетке окисла СпзО служит примером положительных дырок. К окислам типа р относятся СидО, N 0, РеО, СоО, В120з и Сг О . Строение кристаллической решетки СпаО показано на рис. 67. При окислении Си на наружной поверхности раздела Оа — окисел образуются катионные вакансии и положительные дырки. В дальнейшем они мигрируют к поверхности металла этот процесс сопровождается эквивалентной миграцией в обратном направлении ионов Си и электронов, [c.154]

    И)0. Физические и химические свойства металлов. Электронное строение металлов, изоляторов и полупроводников. Металлы облагают рядом общих снонств, к общим физическим свойствам ме-игтлов относятся их высокая электропроводность, высокая тепло- [c.530]

    Одним из важнейших параметров процесса обессоливания нефти является температура. Применяемый на ЭЛОУ подогрев нефти позволяет уменьшить ее вязкость, что существенно повьпыает подвижность капелек воды в нефтяной среде и ускоряет их слияние и седиментацию. Кроме того, с подогревом нефти увеличивается растворимость в ней гидрофобных пленок, обволакивающих капельки воды. Вследствие этого снижается их механическая прочность, что не только облегчает коалесценцию капель воды, но приводит также к снижению требуемого расхода деэмульгатора. Вместе с тем, подогрев нефти на ЭЛОУ сопряжен с серьезными недостатками. С повышением температуры обессоливания сильно увеличивается электропроводность нефти и, соответственно, повышается расход электроэнергии в электродегидраторах, значительно усложняются условия работы проходных и подвесных изоляторов. Поэтому подогрев разных нефтей на ЭЛОУ проводят в широком интервале температур 60— 150 °С, выбирая для каждой нефти в зависимости от ее свойств оптимальные значения, обеспечивающие минимальные затраты на ее обессоливание. [c.39]

    Большинство катализаторов гидрокрекинга—полупроводники. В отличие от металлов (проводники), для которых переход электронов из валентной зоны в зону проводимости осуществляется легко, без преодоления энергетического барьера, в полупроводниках этот переход требует преодоления энергетического барьера, так называемой энергии акт1шации электропроводности Это объясняется те.м, что в металле атомы — нейтральг ые частицы, и электроны обобществлены. В окислах или сульфидах находятся ионы металлов, и для отрыва электронов требуется затрата энергии. По-этo iy окислы металлов (кроме окислов-изоляторов) начинают проводить ток только после нагревания. В любом окисле или сульфиде всегда сл ществуют пpи [e и пли нарушение стехнометрического состава (избыток. металла или избыток металлоида). [c.145]

    Электрические свойства нефти. Безводные нефть и нефтепродукты являются диэлектриками. Значенне относительной диэлектрической постоянной е нефтепродуктов около 2, что в 3—4 раза меньше, чем у таких изоляторов, как стекло (е = 7), фарфор (е = 5 7), мрамор (е = 8-т- 9). У безводных, чистых нефтепродуктов электропроводность совершенно ничтожна. Это свойство широко иопользуетсл на практике. Так, твердые парафины применяются в электроте.хнической промышленности в качестве изолятора, а специальные нефтяные масла (трансформаторное, конденсаторное) — для заливки трансформаторов, конденсаторов и другой аппаратуры в электро- и радиопромышленности. Высоковольтное изоляционное масло С-220 используется для наполнения кабелей высокого давления. Во всех перечисленных случаях нефтяные масла применяются для изоляции токонесущих частей и отчасти для отвода тепла. [c.49]

    Отдельные фрагменты структуры имеют между собой слабые связи, близкие к ван-дер-ваальсовым. Это является однЫ1 из причин высокой смазывающей способности фторуглерода. Поскольку образование фторуглеродной связи сопровождае Тся захватом фтором --электронов проводимости углеродных атомов, резко снижается электропроводность и фторуглерод становится изолятором. Данные рентгеноструктурного анализа позволи- [c.389]

    В теоретических объяснениях поверхностной электропроводности [Бикерман (1935 г.), Урбан, Уайт и Страсснер (1935 г.)] учитывается кроме повышенной плотности зарядов вблизи межфазной поверхности также и их электроосмотическое перемещение. Заслуживает внимания открытый в 1947 г. Фридрихсбергом эффект капиллярной сверхпроводимости , при котором поверхностная электропроводность представляет собой не поправочный, а основной, определяющий фактор. При этом эффекте сопротивление пористого тела, сделанного из изолятора, поры которого заполиены раствором электролита, иногда меньше сопротивления раствора того же сечения. В этом случае очевидно, что поверхностная электропроводность компенсирует с избытком уменьшение электропроводности за счет непроводящего электрический ток скелета пористого тела. [c.138]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

    Веществ, обладающих атомными решетками, сравнительно мапо. К ним принадлежат алмаз, кремний и некоторые неорганические соединения. Эти вещества характеризуются высокой твердостью (алмаз — самое твердое естественное вещество), они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства обусловлены прочностью ковалентной связи. Если атомы в кристаллической решетке связаны только <т-связями, то вещество не проводит электрического тока и является изолятором (кварц). Если в атомной кристаллической решетке присутствуют делокализованные тг-связи, то вещество может иметь хорошую электропроводность (графит). Попытка сдвига одних участков кристаллической решетки относительно других приводит при достаточном усилии к ее разрушению, что связано с разрывом кова.пентных связей, обладающих направленностью. Количество ближайших частиц в кристаллической решетке, окружающих выбранную, назывгьется координационным числом. Координацрюн-ное число в атомных решетках определяется числом <т-связей центрального с окружающими его атомами и, в силу насыщаемости ковалентной связи, не достигает больших значений. Часто оно равно четырем. [c.160]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Электропроводность кристалла при Т = О равна нулю, если валентная зона полностью занята и отделена зоной разрыва от следуюш,ей, более высокой, разрешенной зоны. Проводимость появляется лишь при Т > О, когда часть электронов, расположенных вблизи верхнего края валентной зоны, переходит в более высокую, разрешенную зону, которую называют зоной проводимости (рис. 28, а). Величина проводимости зависит от ширины запреш,енной зоны ео и температуры кристалла. Значение ео определяет различие между полупроводниками и изоляторами. Если ширина запрещенной зоны ео велика, то для переброски в зону проводимости электронам требуется сообщить высокую энергию. Даже при сравнительно высоких температурах ео > кТ, так что валентная зона остается практически полностью занятой, а зона проводимости — полностью свободной. Кристалл проявляет свойства изолятора. Примером может служить алмаз, для которого ширина запрещенной зоны 6—7 эВ . Если величина ео ср авнительно невелика, как в случае германия (0,72 эВ), то уже при невысоких температурах заметное число электронов переходит из валентной зоны в зону проводимости. В валентной зоне появляются свободные места — дырки . Поскольку незанятые состояния имеются как в валентной зоне, так и в зо- [c.187]

    Физические и химические свойства полимеров с системой сопря- женных связей зависят также от природы цепи сопряжения (ацикли ческая, циклическая, гетероциклическая, координационная). Удельная электропроводность, например, различных полимеров колеблется от 10 до 10" 0м см , т. е. диапазон проводимости составляет 10 Ом -см-. В зависимости от значения электропроводности полимеры с системой сопряженных связей могут быть полупроводниками с широким диапазоном электропроводности, а также диэлектриками — изоляторами. [c.413]

    Искусственно созданные органические вещества могут служить также источником открытий п областях науки, казалось бы, никак не связанных с оргаьшческой химией. Наглядным примером могут служить работы, направленные ш создание органических проводников и сверхпроводников. Неспособность типичных органических соединений проводить электротеский ток известна с давних пор. Действительно, именно изолирующие свойства полимеров обусловили их широчайшее внедрение в практику п качестве всевозможных покрьггий. Однако в последние десятилетия бьыо найдено, что некоторые типы полимеров могут проявлять свойства проводников, Так, полимеры общей формулы —(СН=СН)п получаемые полимеризацией ацетилена в условиях реакции Циглера—Натта, приобретают свойства металлических проводников при допировании (частичном окислении мягкими окислителями типа иода). Электропроводность допированного полиацетилена может быть очень значительной (10 См/см), всего лишь на два порядка меньше, чем, например, у серебра(10 См/см ср, с величиной 10- См/см для почти идеального изолятора, тефлона). Важность этого открытия бьша очевидной, и за ним последовал взрывоподобный рост активности в области поиска других органических соединений с подобными свойствами [36]. Помимо полиацетиленов, другие полимеры, содержащие длинные сопряженные цепи, такие, как поли-фенилен, полипиррол или полианилин", также обнаружили способность проводить электрический ток в различных условиях [37]. [c.57]

    Таким образом, при Т 0 К могут существовать только два вида вещества — кепроводники (изоляторы) и проводники, Прн повышсини температуры вещества начинаются тепловые колебания атомов в решетке, тем большие, чем выше температура. Эти 1- олебания препятствуют движению электронов. Поэтому в проводника.х типа металла электропроводность с повышением температуры снижается. [c.282]

    Сварные трубопроводы имеют хорошую продольную электропроводность [см. формулу (3.36) и табл. 3.5]. Величина продольного сопротивления Я предопределяет также и длину зоны защиты Ь по формуле (11.4). Обычно применявшиеся прежде муфтовые соединения с заче-канкой литым свинцом или свинцовой канителью имели з общем случае низкое омическое сопротивление, соответствовавшее продольному сопротивлению нескольких метров длины трубопровода. Неметаллические муфтовые соединения с обрезиненными болтами или раструбами являются практически изоляторами. Старые муфты с компенсаторами, часто применяемые в районах проседания грунта над горными выработками, тоже могут иметь электроизолирующие прокладки. Фланцевые соедине- [c.245]


Смотреть страницы где упоминается термин Электропроводность изоляторов: [c.535]    [c.535]    [c.207]    [c.87]    [c.49]    [c.648]    [c.297]   
Введение в химию полупроводников Издание 2 (1975) -- [ c.9 , c.22 ]

Техника низких температур (1962) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Изоляторы



© 2025 chem21.info Реклама на сайте