Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетический свободная

    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]


    Предположим, что с одной стороны разделяющей перегородки находится чистая вода, а с другой — коллоидный раствор. Молекулы воды могут свободно проникать через перегородку в оба отсека. В первый момент в отсек с коллоидным раствором будет попадать большее число молекул воды, чем покидать его, поскольку выравнивание концентраций по обе стороны перегородки — самопроизвольный энергетически выгодный процесс. Суммарный поток молекул воды в отсек с коллоидным раствором будет продолжаться до тех пор, пока возникающая разность давлений жидкости с обеих сторон перегородки не достигнет определенной величины. Величина этого давления, приводящего к вынужденному равновесию, называется осмотическим давлением раствора.  [c.128]

    Орбитали энергетической зоны заполняются двумя электронами, как и орбитали атома и молекулы, в порядке их расположения по энергиям и в соответствии с принципом Паули. Следовательно, максимально возможное число электронов в зонах, возникающих за 1 чет перекрывания s-, р-, d-, /-... атомных орбиталей, соответственно равно 2N (s-зона), 6N (р-зона), 10 N (/ -зона), 14 N (/-зона)... Зона, которую занимают электроны, осуществляющие связь, называется валентной (на рис. 75 степень заполнения валентной зоны показана штриховкой). Свободная зона, расположенная энергетически выше валентной, называется зоной проводимости. [c.116]

Рис. 20-17. Энергетические уровни пяти -орбиталей свободного иона (в сферическом поле электрического заряда) и комплексов с тремя важнейшими координационными структурами (вычислены для лигандов одинаковой Рис. 20-17. <a href="/info/463287">Энергетические уровни</a> пяти -<a href="/info/1723899">орбиталей свободного иона</a> (в сферическом <a href="/info/1478940">поле электрического заряда</a>) и комплексов с тремя важнейшими <a href="/info/2168">координационными структурами</a> (вычислены для лигандов одинаковой
    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]


    Поскольку у бора и углерода имеются энергетически близкие свободные 2р-орбитали, при возбуждении эти элементы могут приобрести новые электронные конфигурации  [c.68]

    Незамещенные циклоалканы с 15 и более звеньями свободны от трансаннулярных и торсионных взаимодействий, а потому энергетически мало отличаются от н-алканов. [c.45]

    Таким образом, при энергетическом сопряжении процессов в мембране в принципе возможно усиление или ослабление результирующего потока массы в направлении, определяемом градиентом химического потенциала р. (пассивный перенос), и даже миграция газов в область более высоких значений (активный перенос). В любом случае в мембране совершается работа по перемещению массы за счет части свободной энергии, освобождающейся при химической реакции другая ее часть диссипирует. [c.18]

    Сочетание занятой а -орбитали Н и свободной a -орбитали 2 приводит к нулевому перекрыванию. Следовательно, такая комбинация орбиталей к акту химического взаимодействия не приводит. Сочетание свободной а5 " -орбитали Нд и занятой ir -орби-тали 2 энергетически невыгодно (иод электроотрицательнее водорода). Таким образом, в молекулах Hj и I2 нет орбиталей, которые могли бы привести к реакции непосредственно между молекулами. [c.199]

    Если распад радикала возможен по двум путям с образованием в обоих случаях олефина и алкильного радикала, то энергетически более выгоден распад с образованием большего радикала. С перемещением свободной валентности ближе к центру радикала возрастает энергия, необходимая для его распада. [c.24]

    Исключения будут только для случаев заметного взаимодействия между частицами растворенного вещества или между растворителем и частицами одного или большего числа растворенных веществ. В обоих этих случаях, однако, на наличие взаимодействия будут указывать как выделение энергии, так и очень сильное отрицательное отклонение от закона Рауля для растворенного вещества энергия его испарения будет больше. Соответственно с этим будет наблюдаться компенсирующее падение эффективного свободного объема растворенного вещества. Так как энергетический член находится в экспоненте, он будет оказывать преобладающее влияние. В результате равновесие окажется сдвинутым в сторону образования более сильно сольватированных частиц. [c.435]

    Примерно с конца 30-х годов нашего века начался новый этап бурного развития стереохимии органических соединений. Его породила возникшая под влиянием новых фактов необходимость глубокого пересмотра прежних взглядов, в основе которых лежала концепция свободного вращения отдельных частей молекул вокруг ординарных связей при энергетической равноценности состояний, возникающих в ходе такого вращения. В результате этого пересмотра стало ясно, что органическая химия гораздо более объемна , чем думали ранее, что существуют внутримолекулярные взаимодействия, о которых даже не подозревали, что многие изомеры, вполне равноценные по теории Байера, должны, в свете новых представлений, значительно различаться энергетически. Стало ясно, что стереохимия начинается с этана. [c.14]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    Развитие. В соответствии со схемой окисления в присутствии достаточного количества кислорода стадия развития в первую очередь затрагивает более стабильные свободные перекисные радикалы. Реакция таких радикалов на этой стадии является важнейшим фактором, определяющим природу продуктов окисления. Присоединение радикала но месту двойной связи приводит к образованию полимеров перекисей, в то время как в результате отщепления атома водорода от активной метиленовой группы образуется гидроперекись. Термохимические исследования показали, что обе реакции энергетически одинаково выгодны [24]. Такие активные олефиновые углеводороды, как нанример диены, с сопряженными двойными связями, имеют тенденцию к образованию перекисей полимерного типа. В некоторых случаях на стадию развития могут влиять отсутствие метиленовой группы или стерические факторы, однако путем обобщения имеющихся данных нока еще нельзя решить, какой вид реакции будет преобладать в процессе. Место атаки кислорода может зависеть от температуры, более высокие температуры (выше 80° С) способствуют атаке непосредственно па двойную связь [5]. [c.293]


    Н. И. Кобозев, С. С. Васильев и Е. И. Еремин (в теории энергетического катализа, 1937 г.) высказали предположение, что для реакций в разрядах нет необходимости искать какие-то особые химически активные частицы, отличные от активных частиц, участвующих в обычных термических реакциях, т. е. активные частицы в разряде могут быть теми же, что и при обычных реакциях (свободные атомы, свободные радикалы и колебательно возбужденные молекулы). Однако пути возникновения этих частиц в разряде, а следовательно, и концентрации их, могут быть совсем иными, чем при обычных условиях. [c.253]

    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]

    Почти все соединения щелочных металлов растворимы в воде. Ионы щелочных металлов образуют бесцветные растворы. Растворы становятся окрашенными, когда электрон в атоме возбуждается с одного энергетического уровня на другой, причем разница энергий этих уровней соответствует видимой части спектра. У ионов щелочных металлов нет свободных электронов, которые могут возбуждаться светом с энергией, соответствующей видимой части спектра. Оксиды щелочных металлов обладают основными свойствами, и все они реагируют с водой, образуя основные гидроксиды, растворимые в воде и полностью диссоциирующие в ней. [c.434]

    Формально реакция 4 не создает новых свободных валентностей, однако вместо одного бирадикала появляются два новых активных центра, и, таким образом, это — реакция разветвления. Взаимодействие О с молекулой Нз не связано с большими энергетическими затруднениями, и, образование активированного комплекса Н...Н...0 идет довольно легко, так как расслаблению связи Н—Н в молекуле Hj способствует вновь образующаяся связь Н—О. Точная структура активированного комплекса неизвестна, однако есть основания полагать, что она близка к линейной. Частотный фактор можно оценить либо по теории соударений [c.258]

    В сотрудничестве с Норбертом Винером, — вспоминал Борн, — я пытался распространить теорию непрерывного энергетического спектра на случай более общих систем (свободные частицы) с прерывным спектром мы развили операторное исчисление, [c.37]

    Простая и наглядная трактовка физической сущности распределения вещества между двумя жидкими фазами может быть дана на основе представлений Уорда и Брукса [15] об энергетической стороне межфазного обмена. Эпюра изменения свободной энергии при переходе одного из компонентов раствора через поверхность раздела фаз изображена схематически на рис. 5.2. При переходе вещества из одной фазы в другую должен быть преодолен барьер [c.85]

    Кристаллохимическая теория предусматривает возможность образования пакетов слоев роста (состоящих из нескольких этажей двухмерных зародыщей) как результата наложения эффектов пассивации поверхности и изменения ионной концентрации раствора вблизи фронта роста. Предполагается, что часть поверхности, длительное время находившаяся в контакте с раствором, становится отравленной, и образование на ней нового двухмерного зародыша требует добавочной энергии. Напротив, поверхность только что возникшего двухмерного зародын.а остается свободной от адсорбированных посторонних частиц и на ней может с меньшими энергетическими затратами возникнуть новый двухмерный зародыш. Толщина такого пакета ограничивается падением концентрации в зоне наслоения двухмерных зародышей, который может поэтому продвигаться лишь по поверхности грани, а не в направлении, перпендикулярной к ней. Существование пакетов двухмерных зародышей наблюдалось многими авторами. [c.338]

    Ионные кристаллы. В кристалле хлорида натрия (рис. 75, а) валентные электроны атомов Na (3s ) и l (3s 3p ) заполняют валентную энергетическую зону Зр. В представлении теории ионной связи это отвечает переходу электронов от атомов Na к атомам С и образованию ионов Na+ и СГ. Поскольку энергетическое различие между валентной Зр-зоной и свободной 35-зоной велико (Af 6 эВ), в обычных условиях Na l электронной проводимостью не обладает. [c.117]

    Окраска комплексов. Соединения -элементов обычно окрашены. Это объясняется переходом электронов с более низкого на более высокий свободный энергетический уровень, который осуш,ествля- [c.517]

    В кристаллическом состоянии часть электронов из ё — оболочек переходит а зону проводимости и возникает возможность обмена электронами между (1— и внешней з —оболочкой. Энергетическая легкость подобного перехода (определяемая работой выхода электрона из металла) приводит к тому, что на внешней поверхности кристалла обрс1зуется определенное число свободных электронов. Их наличие [c.93]

    В результате предварительного испарения легких фракций разгружается трубчатая печь и снижается давление в ней одновременная ректификация в одной колонне легких и тяжелых фракций позволяет несколько снизить необходимую температуру нагрева. Кроме того, при этом не требуются самостоятельные конденсационные устройства для охлаждения паров, выходящих из первой колонны при двухколонной схеме, отпадает необходимость в сложных дополнительных аппаратах, насосах, снижаются энергетические затраты. Такая схема приемлема для переработки стабильных лефтей, не содержащих большого количества свободных газов (не [c.31]

    Это соответствует максимальной энергии взаимодействия. При 0 = я /(г) = = —5,1 ккал/молъ, что соответствует минимуму. В последнем положении энергетический барьер вращательного движения составляет величину около 5,1/57 90 кал/град, так что связи в молекуле воды не могут свободно вращаться при комнатной температуре. Все эти величины имеют минимально возможшле значения, так как поправки на поляризуемость и определенные размеры частиц приводят к увеличению силы взаимодействия. [c.445]

    Межмолекулярные взаимодействия. Для растворов ПАВ в малополярной среде, какой является смазочное масло, характерны все виды энергетических межмолекулярных взаимодействий химическое (ковалентная, координационная, ионная связи), ван-дер-ваальсово (ориентационные, индукционные и дисперсионные силы), внутримолекулярное и межмолекулярное (водородная связь), электронодонорно-акцепторное (ЭДА-ком-плексы с переносом заряда, ионное межмолекулярное взаимодействие и взаимодействие стабильных свободных радикалов). Энергия некоторых из перечисленных взаимодействий относительно высока (до 210 кДж/моль), значительно выше обычных ван-дер-ваальсовых сил (л 4 кДж/моль), а в некоторых случаях она приближается к энергии химических связей (350— 600 кДж/моль). [c.203]

    При свободном вращении степень свободы, которая была бы колебательной при отсутствии внутреннего вращения, становится вращательной степенью свободы. Число колебательных степеней свободы соответственно в этом случае меньше величины Зга — 6 на число вращающихся групп в молекуле. Если вращение заторможено, степень свободы, аналогичная колебательному движению на низких энергетических уровнях, становится вращательной степенью свободы на высоких энергетичесюгх уровнях. [c.308]

    В донолноние к тому факту, что ионные механизмы находятся в соответствии с энергетическими данными, было отдгечено, что существование ионов карбония, нрото]юв и гидридных ионов в свободном состоянии, что моншо наблюдать с помощью масс-спектрометра, ионной теорией во внимание ие принимается. Предполагается, что заряженные осколки находятся в тесной близости со своими партнерами, или с катализатором, или с тем и другил . [c.137]

    Энергетически реакции типа (1) обычно очень удобны, так как при полимеризации олефина выделяется от 12 до 23 ккал на 1 моль при незначительном снижении энтропии, так что при обычных температурах снижение свободной энергии составляет 2—13 ккал1моль [34]. С другой стороны, несомненно, для превращения олефинов в высокополимеры требуются довольно специфичные условия и методы полииррпзации. Олефины, действительно дающие такие продукты, составляют сравнительно небольшую группу. С этой точки зрения рассмотрение полимеризации включает два вопроса 1) по какому пути могут протекать реакции полимеризации и 2) какие факторы определяют, способен ли данный мономер к полимеризации, и при каких условиях будет идти этот процесс. [c.115]

    Инициаторы полимеризации. Инициирование цепей является одним из наиболее сложных вопросов в свободно-радикальной полимеризации, поскольку практически все известные способы получения свободных радикалов тем или иным путем могут быть использованы для этой цели. Это чрезвычайно важно, так как успех любой реакции полимеризации зависит от постоянной и подходящей скорости получения активных центров. Некоторые мономеры, особенно стирол (и, по-видимому, стиролы с замещениями в кольце), подвергаются некатализируемо11 реакции полимеризации при нагревании без добавления инициаторов. Эта термическая реакция была исчерпывающе изучена [22]. Однако точно природа реального процесса инициирования все еще не известна. С энергетической и кинетической точек зрения процесс является, по крайней мере, бимолекулярным [46] большинство исследователей постулирует образование из мономера в результате бимолекулярной реакции дирадикала молекулы мономера соединяются по принципу хвост к хвосту , как указано ниже, [c.133]

    Имеются данные, указы1шющио иа существование двух различных типов комплексов ароматических углеводородов с резко различными свойствами, разделенные между собой значительным потенциальным энергетическим барьером. Один тип комплексов включает свободную связь электрофильного агента с облаком я-электронов. Эти комплексы называются я-комплексами. Второ тин включает проникповение такого агента в облака я-электронов и разрушение его, приводящее в результате к образованию настоящей сг-связи с одним из углеродных атомов кольца. Эти производные были названы т-комплексами. Свойства комплексов ароматических углеводородов ц влияние структуры ароматических углеводородов на стойкость этих комплексов очень хорошо объясняются в понятиях структуры, предложенной для я- и (т-комилексов. [c.406]

    Необходимо отметить, что такие подсчеты не обеспечивают действительно удовлетворительного определения относительных вероятностей обеих реакций. Сомнительно, чтобы мог быть замещен атом водорода как таковой. Значительно вероятнее положение, что атом водорода будет удален при помощи другого свободного радикала (X VIII), так что любой суммарный энергетический расчет стадии, определяющей скорость реакции, должен включать определение энергии образования новой связи,, образуемой водородным атомом  [c.463]

    С другой стороны, энергетические эффекты на одну макромолекулу высокополимера весьма велики в соответствии с большим числом контактирующих звек ьев. Поэтому ничтожно малой положительной свободной энергии взаимодействия звеньев различной природы достаточно для того, чтобы полимеры не смогли растворяться друг в друге. Несовместимость полимеров является поэтому скорее правилом, чем исключением и наблюдается не только при смешении полимеров в массе, но и в хороших растворителях. Наблюдается даже расслоение сополимеров одинаковой химической природы, но с широкой гетерогенностью по составу. Исключение составляют полимеры с полярными заместителями, для которых взаимодействие разнородных звеньев энергетически выгодно и которые поэтому хорошо совмещаются друг с другом. [c.34]

    Ц1ЯЙ подобного типа. Все они характеризуются малым (не более 10 000 кал1моль) значением энергии активации. Лишь для малоактивного радикала НОг , свойства которого близки к свойствам насыщенной молекулы, получено большее значение энергии активации. Это и понятно, ибо наличие свободной валентности в исходной системе энергетически облегчает осуще- етвление реакции. По этой же причине для многих реакций [c.135]

    Имеются случаи, когда роль свободного радикала играет ион, например ион N2 —бнрадикал. Тогда уже первичный процесс ионизации электронным ударом ведет к возникновению радикала. Согласно упоминавшейся теории энергетического катализа, значительную роль в реакциях, протекающих в разрядах, играют так называемые удары второго рода, в результате которых энергия электронного возбуждения одного из партнеров в соударении превращается в иной вид энергии другого партнера. Примером удара второго рода в разряде может служить процесс, наблюдающийся при разряде в смеси аргона и кислорода [c.254]

    Если возбуждение атома, приводящее к увеличению числа неспарениых электронов, связано с очень большими затратами энергии, то эти затраты не, компенсируются энергией образования новых связей тогда такой процесс в целом оказывается энергетически навыгодным. Так, атомы кислорода и фтора 16 имеют свободных орбиталей во внешнем электронном слое  [c.129]

    Для меди и циика затрата энергии иа ионизацию свободных атомов и выигрыш ее нрн гидратации иоиов близки. Ыо металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавлс [ ия этих металлов цинк плавится при 419,5 °С, а медь только при 1083 С. Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этнх металлов в ряду напряжений. [c.293]

    В свободном состоянии висмут представляют собой блестящий эозовато-бслый хрупкий металл плотностью 9,8 г/см . Его применяют как в чистом виде, так и в сплавах. Чистый висмут используют главным образом в энергетических ядериых реакторах в качестве теплоносителя. С некоторыми металлами висмут образует легкоплавкие сплавы например, сплав висмута со свинцом, оловом и кадмием плавится при 70"С. Эти сплавы применяют, в част)юсти, в автоматических огнетушителях, действие которых основано на расплавлении пробки, изготовленной из такого сплава. Кроме того, оии используются как припои. [c.429]

    Система — конечное множество объектов, связанных существующими между ними силами и образующих единую целостность, мысленно обособляемую от окружающей среды в том или ином смысле. Система, не имеющая с окружающей средой массообмена, называется закрытой, а теплообмена — адиабатической. Закрытая адиабатическая система является изолированной. Если внутри системы пет поверхностей фазового пли любого иного раздела, которые отделяют друг от друга части системы, имеющие разные свойства, то такая система называется гомогенной. Совершенной в термодиналшческом смысле будет система, в которой большую часть времени члены системы движутся независимо друг от друга, вступая во взаимодействие лишь в процессе соударений, продолжительность которых пренебрежимо мала по сравнению со временем свободного движения. Понятие соударение определено в разд. 2.1. Компонентами системы А , г = 1,. . ., М, называются индивидуальные вещества, отличающиеся друг от друга либо химическим составом, либо строением (конфигурацией). При микроскопическом рассмотрении компоненты можно также различать по энергетическим состояниям. Система, состоящая из нескольких (многих) компонентов, является многокомпонентной. [c.12]

    Изменения катализатора при воздействии реакционной смеси и каталитической реакции приводят к дополнительному уменьшению свободной энергии и увеличению энтропии системы в целом, В то же время энтропия собственно катализатора (подсистемы) уменьшается, а свободная энергия возрастает. Это положение становится очевидным уже из того, что, в рассмотренной системе при исключении катализа должен пойти самопроизвольный процесс К Кт. Другими словами, катализатор в таких системах играет роль своеобразной энергетической ловушки, в которой накапливается также отрицательная энтропия . Здесь просматривается интересная аналогия с биологическими системами, неотъемлемая функция которых — порождение отрицательной энтропии и свободной энергии за счет протекающих в организме процессов переработки питательных веществ [79]. Можно сказать, что в каталитических системах существует механизм молекулярной селекции, обусловленной устойчивостью различных активных состояний. Цапомним, что устойчивость активного состояния (соединения) в каталитической реакции тем выше, чем больше оно удалено от равновесного и чем больше, следовательно, его запас свободной энергии и отрицательной энтропии [80]. [c.303]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    Если выбор движущих сил 1 и Дг независим, то при определенных условиях выражение в скобках и величина Р могут приближаться к нулю при конечных значениях потоков. Поскольку диссипативная функция характеризует рассеяние свободной энергии, это означает приближение процессов в условиях полного сопряжения к термодинамической обратимости. Подробнее проблема энергетической эффективности процессов мембраны в условиях их сопряжения рассмотрена в гл. 7. Здесь же оценим влияние степени сопряжения на скорость массопереноса в мембране. На рис. 1.2 показан общий вид зависимости, где величина Z использована для приведения отношений потоков /]//2 и сил Х-21Х1 к безразмерной форме. [c.19]

    Молекула олефина или сенсибилизатора, получая энергию све тового кванта, может перейти на более высокий энергетически уровень. Такой переход связан с селективным возбуждением элек тронов, находящихся на связывающей я-орбитали олефина, на п или п-орбитали сенсибилизатора. У олефина имеется свободна разрыхляющая я -орбиталь, и при возбуждении возможны пере ходы на нее одного или двух электронов со связывающей я-орб тали. Для сенсибилизатора возможны дополнительно переходы я-молекулярной на я -молекулярную орбиталь. [c.66]


Смотреть страницы где упоминается термин Энергетический свободная: [c.340]    [c.57]    [c.217]    [c.535]    [c.230]    [c.63]    [c.256]   
Физико-химия коллоидов (1948) -- [ c.21 ]




ПОИСК







© 2024 chem21.info Реклама на сайте