Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологическая схема растворителем

    Для разделения фракции н. к. — 80°С рафината платформинга с получением гексановой фракции в работе [24] рассмотрены и сопоставлены по энергетическим затратам три технологические схемы (рис. 1У-25). Сопоставление схем показало, что удельные энергетические затраты на получение 1 т растворителя для указанных схем соотносятся как 1,0 1,5 2,2. Следовательно, схема с последовательной отгонкой фракций в двух колоннах является предпочтительной. В табл. IV. 14 приведены характеристики различных растворителей. [c.235]


Рис. 6.14. Технологическая схема отделения регенерации растворителя установки двухступенчатой депарафинизации Рис. 6.14. <a href="/info/716083">Технологическая схема отделения</a> <a href="/info/140137">регенерации растворителя</a> <a href="/info/473349">установки двухступенчатой</a> депарафинизации
    В практике инженера-химика встречается также большое количество других задач, которые могут быть сведены к экономическому сравнению. Для получения желаемого продукта из многих принципиально различных методов, при использовании которых образуются различные побочные продукты или применяется различное сырье, нужно выбрать один. На установленном производстве можно испробовать многие технологические варианты. Например, для предварительного нагревания сырья из ряда греющих агентов можно выбрать пар, органические теплоносители, расплавленные металлы или соли, электрический ток, топочные газы и т. д. Аналогично при абсорбции надо делать выбор из нескольких растворителей. Когда окончательно выбрана технологическая схема, следует еще при проектировании произвести наиболее удобную серийную расстановку машин и аппаратов. В подобных случаях часто применимы описанные выше статистические методы. Следует определить стоимость одного варианта, а затем сравнивать с ним остальные (подробно эта задача в настоящей книге не рассматривается). Необходимо учитывать, что оптимальными будут те технически возможные альтернативы, при которых себестоимость будет минимальной. [c.354]

    Химические методы очистки аппаратуры от осадков несколько усложняют технологическую схему производства, вызывают необходимость создания системы рецикла, регенерации или утилизации отработанного растворителя и т. д. Однако при подборе эффективного растворителя с учетом конкретных условий всего производства можно создать благоприятные условия для широкого исполь- зования химических методов очистки аппаратуры с последующей комплексной переработкой отходов. [c.298]

    Технологическая схема комбинированного процесса, в котором сочетается депарафинизация кристаллизацией с экстракционной депарафинизацией, может осуществляться следующим образом. Исходный продукт депарафинируется кристаллизацией в среде избирательного растворителя по принятым схемам при умеренно низких температурах для получения масла с температурой застывания —15 Н--20°. Часть раствора масла в количестве, необходимом для получения заданного количества низкозастывающего масла, отводится в аппаратуру для экстракционной депарафинизации, где охлаждается до —36 --38°. [c.158]


    Технологическая схема процесса. Нагретое исходное сырье (рис. 24) смешивается в потоке в диафрагменном смесителе с 2— 2,5 частями растворителя-разбавителя и поступает в сборный (смесительный) резервуар, оборудованный пропеллерной мешалкой для выравнивания концентрации полученного раствора. [c.175]

    По признаку отношения отгоняемых растворителей к воде различные варианты технологических схем отгона растворителей от продуктов депарафинизации можно разделить на три основные группы. В первую группу входят процессы, в которых отгоняемый растворитель и вода остаются практически взаимно нерастворимыми, а также процессы, в которых растворитель отгоняют без воды и без ввода в систему острого водяного пара. Эти процессы наиболее просты по технологическому оформлению. К этой группе [c.233]

    Технологическая схема процесса регенерации дихлорэтан-бензолового растворителя от продуктов депарафинизации остаточного сырья показана на рис. 43. [c.237]

    Технологическая схема установки представлена на рис. VI1-3. Гудрон, нагнетаемый насосом 1, подогревается в теплообменнике 2 и поступает в сырьевой приемник 3. Отсюда гудрон насосом 4 направляется в непрерывно действующую экстракционную колонну 6. В нижнюю часть этого же аппарата насосом 9 подается легкая бензиновая фракция, предварительно нагретая под давлением в змеевиках трубчатой печи 5. Сырье и растворитель вводятся в экстрактор 6 через встроенные распределители. Образующийся при встречном движении раствор деасфальтизата до выхода из экстрактора нагревается во встроенном подогревателе, расположенном над распределителем сырья с повышением температуры этого раствора улучшается качество получаемого деасфальтизата, но снижается его выход. [c.69]

    Технологическая схема любой установки селективной очистки включает секции, обеспечивающие следующие основные операции экстракцию компонентов сырья с образованием двух фаз в аппаратах непрерывного действия, непрерывную регенерацию растворителя путем отгона из рафинатного и экстрактного раствора, обезвоживание растворителя. В пособии описаны типовые технологические схемы установок селективной очистки, однако в схемах промышленных установок есть различные варианты оформления как экстракционного отделения, так [c.70]

    При очистке легких дистиллятов с целью получения маловязких низкозастывающих масел, когда экстракция осуществляется при сравнительно низких (35—40 °С) температурах, в технологическую схему установки включают холодильную систему. Холодильная система предназначена для охлаждения до 3—8 °С воды, используемой в холодильниках для сырья и для экстрактного раствора, рециркулирующего в нижней части экстракционной колонны. На подобных установках в секции регенерации растворителя колонны оборудованы большим числом тарелок, чтобы избежать уноса масляных компонентов парами фенола. [c.71]

    РИС. У И-3. Технологическая схема установки для очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья  [c.79]

    Основные отделения установки следующие кристаллизации, фильтрования, регенерации растворителя из раствора депарафинированного масла и растворов гача или петролатума. Технологическая схема установки кристаллизации и фильтрования представлена на рис. 1Х-1. [c.80]

    Основные отделения установки следующие кристаллизации, фильтрования, регенерации растворителя из растворов депарафинированного масла, парафина или церезина и отходов обезмасливания. Технологическая схема установки отделения кристаллизации и фильтрования представлена на рис. 1Х-2. [c.81]

    Основные отделения установки следующие кристаллизации, фильтрования, регенерации растворителя из растворов депарафинированного масла и гача. Отделение регенерации растворителя не отличается от аналогичного для обычных установок депарафинизации. Отделения кристаллизации и фильтрования имеют специфические особенности, в частности использование двух хладагентов сжиженного аммиака для охлаждения раствора сырья до —33 н—34 °С и этана для охлаждения до —58- —60 °С (температура фильтрования). Технологическая схема установки (отделения кристаллизации и фильтрования) представлена на рис. 1Х-3. [c.84]

    Основные отделения установки кристаллизация, фильтрование, регенерация растворителя из раствора депарафинированного масла и растворов гача и петролатума. Технологическая схема установки (отделения кристаллизации и фильтрования) представлена на рис. 1Х-4. [c.86]

    Регенерация растворителя из раствора депарафинированного масла осуш,ествляется в четыре ступени. На рис. IX-5 представлена технологическая схема одного из отделений, применяемая на заводских установках депарафинизации нефтяного масляного сырья. [c.87]


    РИС. 1Х-5. Технологическая схема отделения регенерации растворителя на установке депарафинизации рафинатов  [c.89]

    Основные секции установки следующие адсорбции и десорбции отпаривания растворителя из пульпы засмоленного адсорбента регенерации адсорбента регенерации растворителя из растворов рафинатов I и П. Технологическая схема установки представлена на рис. Х-1. [c.93]

    В способе производства дифенилолпропана па ионообменных смолах, применяемом в СССР, используется следующая технологическая схема (рис. 27). Исходные реагенты и промотор подают в реактор У, заполненный ионитом. Реакционную смесь разделяют затем ректификацией. Вначале в колонне 2 отгоняется легкая фракция (ацетон, вода, промотор и часть фенола). Эта смесь обезвоживается на ректификационных колоннах (на схеме не показаны) и исходные компоненты возвращаются на синтез. Смесь дифенилолпропана, побочных продуктов и фенола, оставшаяся после отгонки легкой фракции, подается в вакуумную колонну 3. Фенол там отгоняется, а дифенилолпропан-сырец отделяют от побочных продуктов перекристаллизацией из органического растворителя в аппаратах 4 я 5. Отфильтрованный продукт сушат и гранулируют. Из маточного раствора растворитель регенерируется в колонне 8. Кубовый остаток (побочные продукты) после предварительной об- [c.157]

    Для химической очистки масел также применяются различные методы, наиболее легкий путь — подвергать очистке широкую фракцию в течение последних лет для очистки используются различные растворители (см. гл. V). В настоящее время производство очищенного парафина и парафинистых дистиллятов не имеет широкого распространения, но всегда придает технологической схеме завода известную гибкость. В этом случае можно получить целый ряд парафинистых смазочных масел, из которых путем компаундирования составляют товарные продукты. В табл. Х-1 приводятся свойства типичных смазочных масел. [c.495]

    Несмотря на многочисленные допущения, моделирование по Льюису дает почти точное предсказание истинных переходных характеристик установки. Было обнаружено, что установка неустойчива как при низких скоростях питания, так и при повышении концентрации растворителя в питании. Воспроизводятся период колебаний и степень затухания процесса регулирования, так же как пределы пропорциональности регулирования и время изодрома, устанавливаемые на регуляторах. Первоначальная и измененная технологические схемы показаны на рис. Х1-3, иллюстрирующем изменение системы управления в связи с перестройкой самого процесса (технологические линии, исключенные после обследования установки и введения схемы утилизации [c.138]

    Оформление технологического процесса получения изопреновых каучуков с использованием различных каталитических систем не имеет принципиальных отличий. Технологическая схема включает следующие основные стадии [22] 1) полимеризация изопрена 2) дезактивация катализатора 3) стабилизация полимера 4) водная дегазация каучука 5) сушка каучука 6) очистка возвратного растворителя. [c.219]

    Стадии отмывки, выделения, сушки каучука и регенерации растворителя и мономеров выполнены аналогичным образом и в других технологических процессах. Имеющиеся незначительные отличия ясны из приводимых технологических схем и не нуж-даются в разъяснении. [c.307]

    Технологическая схема получения этилен-пропиленового каучука в инертном растворителе с циркуляцией газовой фазы  [c.307]

    Технологическая схема прямоточной экстракции изображена на рис. 2-16, аппаратурная схема для трех ступеней—на рис. 2-17. Исходный раствор смешивается в насосе с первой порцией растворителя С . В первом отстойнике 0 выделяется сырой экстракт Е , который отводится из установки, и сырой рафинат 7 , засасываемый насосом Р , где в него подмешивается вторая порция растворителя Сз. Выделенная в отстойнике 0 вторая порция сырого рафината смешивается в насосе Рд с третьей порцией растворителя Сд и разделяется в отстойнике Од. Окончательно получается хорошо экстрагированный сырой рафинат и три сырых экстракта Е , Е , [c.113]

Рис. 2-25. Технологическая схема многоступенчатой противоточной экстракции с оборотом растворителя Рис. 2-25. <a href="/info/24932">Технологическая схема</a> <a href="/info/892465">многоступенчатой противоточной экстракции</a> с оборотом растворителя
    Дальнейшая модификация полученной операторной схемы ХТС может быть осуществлена объединением ТТО, выполняющих противоположные технологические операции. Например, в задачах теплообмена следует объединять подвод и отвод тепла или применять детандерное расширение газа вместо дросселирования, чтобы использовать полученную при этом энергию для сжатия в другом месте технологической схемы ХТС. Аналогичная ситуация возникает при использовании для реализации ТТО разделения, соответствующего процессу экстракции, в качестве растворителя одного из потоков системы. [c.202]

    Рассмотрим технологические схемы разделения рафинатов платформинга с целью получения высококачественных бензинов-растворителей. Растворитель представляет собой пятиградусную гексановую фракцию (65—70°С) с минимальным содержанием микропримесей бензола, серы н непредельных углеводородов. В качестве сырья для получения гексановой фракции используется рафинат платформинга, содержащий менее 0,05 —0,1% (масс.) бензола [24]. Гексановая фракция, выделенная из газового бензина, содержит до 4,9% (масс.) бензола, что значительно превыщает существующие нормы. [c.235]

    Технологические схемы кетон-бензол-толуоловых процессов депарафинизации. Из различных вариантов процессов депарафинизации в кетон-бензол-толуоловых растворителях здесь будут описаны лишь основные и наиболее характерные и даны технологические показатели для некоторых типичных видов сырья. Приводимые примеры процессов пе относятся к каким-либо конкретным установкам, работающим па тех или иных нефтеиерерабатываю- [c.186]

    Двухступенчатый процесс по гачу. Первую ступень процесса депарафинизации в две ступени по гачу (рис. 27) проводят по такой же принципиальной технологической схеме, как и процесс в одну ступень, с той лишь разницей, что к сырьевому раствору добавляют смесь фильтратов от II ступени фильтрации. Эти фильтраты вводят в сырьевой раствор обычно после регенеративных кристаллизаторов Кр-Р вместо подаваемого туда при одноступенчатом процессе чистого растворителя. Первую ступень фильтрации в этом варианте процесса ведут при конечной температуре обработки, и получаемый при этом основной фильтрат представляет собой раствор целевого масла. [c.190]

    Обезмасливание гачей и петролатумов. Обезмасливание га-чрй и петролатумов в кетон-бензоловых растворителях проводят по таким же принципиальным технологическим схемам, какие были описаны выше для процессов депарафинизации в этих растворителях. Это позволяет ограничиться описанием только наиболее употребительного варианта процесса — двухступенчатой обработки по гачу, точнее — по парафину. [c.194]

    Технологическая схема динамического варианта процесса адсорбционной депарафинизации следующая. Исходное сырье разбавляют растворителем-разбавителем (бензином) и профильтровывают через слой гранулированного депарафинирующего адсорбента. При фильтрации застывающие компоненты сырья удерживаются адсорбентом, а депарафинировапный раствор, содержащий не адсорбируемое данным адсорбентом целевое низкозастывающее масло, выводят из слоя адсорбента и отправляют на регенерацию растворителя. Отработанный адсорбент для удаления оставшегося раствора сырья промывают чистым растворителем-разбавителем, затем пропаркой водяным паром освобождают его от растворителя, просушивают воздухом и далее промывают десорбирующим растворителем (бензолом) для извлечения из него застывающих компонентов и восстановления его адсорбирующей способности. После отмывки застывающих компонентов адсорбент еще раз пропаривают водяным паром для удаления из него десорбирующего растворителя, просушивают воздухом и снова возвращают в процесс для повторных использований. [c.223]

    Основные секции установки следующие экстракции сырья растворителями, регенерации растворителей из рас инатного раствора, регенерации растворителей из экстрактного раствора и регенерации растворителей из водных растворов. Очистка парными растворителями осуществляется в горизонтальных аппаратах — экстракторах. Экстракционное отделение состоит из семи секций, каждая из которых включает смеситель и отстойник. Технологическая схема установки представлена на рис. VII1-3, [c.77]

    Фенол обладает более высокой растворяющей способностью по отношению к маслам, чем фурфурол, но мекьшей, чем нитробензол и хлорекс, и отличной избирательностью. Температура экстракции находится в интервале 50—90°, и отношение объемов фенола и масла, как правило, ниже подобного отношения при экстракции фурфуролом. Из-за относительно малой плотности и большой вязкости фенола скорость осаждения 1шже, чем при применении других растворителей. Для увеличения избирательности и регулирования растворяющей способности в экстракционную систему между местом загрузки масла и слоем растворителя на дне колонны обычно вводится вода в количестве 5—10% от объема растворителя. Технологическая схема процесса экстракции фенолом в принципе аналогична технологической схеме экстракции фурфуролом. [c.196]

    Упрощенная технологическая схема одного вида процесса удэкс изображена на рис. 32. Углеводородный исходный продукт, содержащий бензол, экстрагируется при температуре до 175° и под давлением, например 7,7 кГ/см , достаточным для того, чтобы сырье оставалось жидким. Растворитель содержит немного воды (до 8%). Вода вводится в экстрактор отдельно через верх и служит для очистки рафината от остатков растворителя, содержащегося в нем. Экстрактор имеет около пяти равновесных ступеней. [c.200]

    Реакция карбонилирования протекает в жидкой фазе. Поэтому при работе с олефинами Сг—С3 применяют растворитель, которым могут служить углеводороды (например, иентап-гексановая фракция), толуол, спирты (изобутиловый), продукты реакции, гидрированные кубовые остатки. Выбор растворителя определяется рядом условий, зависящих от особенностей принятой технологической схемы. [c.52]

    Так, по способу фирмы Hooker hemi al " после разделения реакционной массы дистилляцией подвергают обработке ту часть побочных продуктов, которая отгоняется вместе с дифенилолпропаном (соединение Дианина, орто-орто- и орто-пара-изомеры дифенилолпропана) и отделяется затем от него экстракцией органическим растворителем. Остаток после отгонки растворителя смешивают с фенолом в другом аппарате и через смесь при 50 °С пропускают газообразный хлористый водород. Предполагается, что при этом соединение Дианина превращается в указанные изомеры дифенилолпропана. Затем все эти изомеры полностью или частично изомеризуются в дифенилолпропан. Из полученной массы дифенилолпропан можно выделить известными методами (дистилляцией, в виде его аддукта с фенолом и др.). Однако чтобы не усложнять технологическую схему, рекомендуется просто добавлять полученную массу к исходному сырью, поступающему на синтез в основной реактор. Условия в основном реакторе синтеза и в реакторе для обработки побочных продуктов отличаются только тем, что во второй из них не подают ацетон. Для увеличения времени пребывания побочных продуктов в зоне реакции несколько аппаратов соединяют последовательно. [c.177]

    Следующей стадией производства ацетилена (после пиролиза илн крекинга метана) является выделение и газовой смеси ацетилена-концентрата, содержащего не менее 99,2—99,6 объемн. % СоНг остальное — высшие ацетиленовые углеводороды, азот, кислород и, в тави-симости от способа концентрирования, 0,1—0,2% л у-окиси углерода или 0,09—0,1% этилена. Известно несколько технологических схем концентрирования ацетилена наибольшее распространение в промышленности получили схемы с применением селективных растворителей 2,3.6,10,12 [c.13]

    Существует несколько технологических схем кон- к грпроваиия ацетилена (стр. 13 сл.), для безопасной раосты которых необходимы различные условия и мероприятия. Наиболее распространена схема концентрирования селективными растворителями, которая и будет описана в первую очередь, причем детальнее, чем другие схемы концентрирования. [c.102]

Рис. 4. Технологическая схема концентоирования ацетилена абсорбцией селективным растворителем Рис. 4. <a href="/info/24932">Технологическая схема</a> концентоирования ацетилена <a href="/info/30715">абсорбцией селективным</a> растворителем
    Для исследования динамики полимерообразования, подбора эффективных растворителей в промышленных условиях, а также для очистки газа от примесей, стимулирующих процесс образования полимерных веществ, была сконструирована специальная установка, позволяющая выполнить приведенный выше комплекс работ без выключения компрессора из технологической схемы установки компримирования. [c.197]

    Для одновременной очистки газа от сероводорода, двуокиси углерода и воды применяют смесь этаиоламина с этиленгликолем. Такая комбинированная очистка приводит к обезвоживанию сырья и снижению расхода водяного пара, используемого для регенерации растворителей. На рис. 72 приведена технологическая схема очистки природного газа смесью этаноламина с этиленгликолем. [c.161]

    Для получения масел с низкой температурой застывания применяется процесс 01—Ме [42, 50, 68, 69], в котором растворителем служит смесь дихлорэтана (50—70% масс.), выполняющего роль осадителя твердых углеводородов, и метиленхлорида (50— 30% масс.), являющегося растворителем жидкой фазы. Использование этого растворителя позволяет получать депарафинированные масла с температурой застывания, близкой к температурам конечного охлаждения и фильтрования. Одним из достоинств процесса 01—Ме является высокая скорость фильтрования суспензии твердых углеводородов, достигающая 200 кг/(м -ч) на полную поверхность фильтра. В работах [42, 70] показана возможность иопользования для депарафинизаци и рафинатов широкого фракционного состава смесей дихлорэтана с дихлорметаном и дихлорэтана с хлористым пропиленом. Эти растворители позволяют проводить процесс депарафинизации с ТЭД в пределах О—1 °С, причем в случае двухступенчатого фильтрования содержание масла в парафине не превышает 2% (масс.). Наряду с этим большим достоинством хлорорганических растворителей является возможность исключить из технологической схемы установки систему инертного газа, так как эти растворители негорючи и взрывобезопасны. Общим недостатком всех хлорорганических растворителей является термическая нестабильность при 130—140 °С с образованием коррозионно-агрессивных продуктов разложения. Для выделения твердых углеводородов из масляных фракций предло- [c.158]

    Таким образом, каждый вариант сочетания гидроочистки с процессами селективной очистки и депарафинизации имеет своя преимущества. Выбор оптимальной технологической схемы должен базироваться на тщательной оценке эксплуатационных свойств получаемых масел и на данных технико-экономического соноставления схем. В настоящее время данных для такого выбора недостаточно, и этот вопрос требует дальнейшего изучения. Рассмотренные варианты процесса гидроочистки так или иначе сочетаются с очисткой селективными растворителями. Однако в ряде случаев гидроочистка является основной стадией очистки и позволяет исключить из технологической схемы процесс селектив-тивной очистки. Это возможно при наличии сырья благоприятного состава и выработке масел с невысокими вязкостными свойствами. [c.307]


Смотреть страницы где упоминается термин Технологическая схема растворителем: [c.7]    [c.104]    [c.197]    [c.158]   
Технология производства урана (1961) -- [ c.491 ]




ПОИСК







© 2025 chem21.info Реклама на сайте