Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение катодное и след

    Рассматривая механизм действия ПАВ на процесс катодного выделения металлов, следует прежде всего остановиться на формах, в которых это влияние проявляется. [c.375]

    Эксперименты с индикаторными количествами радиоактивных изотопов элементов показали возможность количественного выделения металлов на твердых (и ртутных) электродах до весьма малых содержаний, например, 10- г/мл [459]. При достаточном времени электролиза все примеси, у которых величина потенциала выделения более положительна, чем величина потенциала выделения водорода (последняя составляет, например, при 20° С и плотности тока 1 а/см на платиновом катоде в 0,1 н. растворе НгЗО —0,10 в), можно количественно извлечь из разбавленных растворов кислот и солей щелочных металлов путем электроосаждения на металлических электродах с последующим возбуждением спектра катодного осадка [1465]. Выделение следов происходит по законам диффузионной кинетики, причем скорость электро-осаждения падает с уменьшением концентрации примеси и зависимость количества выделенного на электроде вещества уменьшается во времени по экспоненциальному закону. В интересах полноты и ускорения выделения элементов следует увеличивать площадь катода (точнее, отношение поверхности катода к объему исследуемого раствора) и повышать температуру раствора. [c.314]


    Катодная реакция, сопровождаемая выделением водорода, следующая  [c.87]

    Уравнения реакций (19.1), (19.2) и (19.3) представляют собой суммарное выражение процесса катодного выделения водорода при различных условиях электролиза. Этот процесс состоит из ряда последовательных стадий и может протекать по различным путям в зависимости от конкретных условий. Первая стадия — доставка к поверхности электрода частиц, служащих источником получаемого катодного водорода, протекает в данном случае без существенных торможений. Следующая за ней стадия отвечает разряду ионов водорода (или молекул воды) с образованием адсорбированных атомов водорода  [c.403]

    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]


    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Из экспериментальных и расчетных данных (см. табл. 1) следует, что 1на-чения критериев процесса катодного выделения водорода в неингибированной среде ближе к требованиям теории замедленной рекомбинации. Вероятно, на [c.181]

    Катодный никель кристаллизуется в виде волокнистых кристаллов весьма незначительного поперечного сечения (см. рис. 55, б). Поверхность осадка должна быть мелкокристаллической, бархатистой, имеющей незначительную полосчатость в вертикальном направлении. Эта полосчатость свидетельствует о том, что разряд ионов никеля совершается в растворе, содержащем коллоиды. На поверхности осадка допускаются незначительные неровности в виде куполообразных наростов высотой до 2 мм. Не должно быть следов выделения водорода (питтинги), шишковидных наростов, дендритов, а также появления темно-серой окраски осадка. [c.380]

    Значения потенциалов разложения дают нам сведения только о начале электролитического выделения в 1 н. растворе соли. Так как в ходе процесса происходит уменьшение концентрации ионов вследствие выделения их на катоде и аноде, то потенциалы катода и анода при электролизе также изменяются. Из уравнения (399) следует, что в ходе разрядки катионов катодный потенциал уменьшается (сдвигаясь в сторону отрицательных значений), так как уменьшается активность катионов. Соответственно из уравнения (401) видно, что с потерей заряда ионами 0Н (аон- становится меньше) анодный потенциал возрастает (сдвигаясь в сторону положительных значений). Напряжение разложения определяется как [c.260]

    Рассмотрим разряд ионов Н+ в разбавленных растворах кислоты с добавкой 1,1-валентного электролита при отсутствии специфической адсорбции ионов раствора. Такие условия реализуются, например, в растворах НС1+КС1, так как области катодного выделения водорода на ртути соответствуют большие отрицательные заряды, при которых ионы С1 не адсорбируются на ртутном электроде, а ионы специфической адсорбируемостью практически не обладают. При данных условиях из теории двойного слоя следует, что [c.252]

    Для выяснения механизма выделения водорода используется и ряд других методов. Так, например, определенные выводы о механизме выделения водорода можно сделать, изучая проникновение водорода в решетку металла. Такие опыты проводятся в ячейках, которые разделены на две части фольгой — мембраной из исследуемого металла. Одну сторону (поляризационную) мембраны подвергают катодной поляризации и следят за изменением потенциала противоположной стороны (диффузионной). При катодной поляризации одной стороны мембраны потенциал диффузионной стороны также смещается в отрицательную сторону, что свидетельствует об избыточной поверхностной концентрации водорода на поляризационной стороне, вызванной замедленностью стадий удаления водорода, и диффузии водорода через металл. [c.347]

    Чтобы суммарную катодную и анодную кривые разложить на парциальные кривые выделения водорода и ионизации металла, следует прибегнуть к дополнительным измерениям. Например, скорость растворения металла можно найти методом радиоактивных индикаторов или каким-либо аналитическим методом определения ионов металла в растворе. Скорость выделения водорода можно измерить газометрическим методом. [c.376]

    Однако, как следует из рис. 4.37, скорость катодного процесса выделения водорода при велика, что приводит к сдвигу потенциала в анодную сторону и к ускорению анодного процесса ионизации металла. В результате, при некотором потенциале Е . скорости (токи) анодного и катодного процессов станут равными и система придет в так называемое стационарное состояние ( е — стационарный потенциал или потенциал коррозии). [c.269]

    Получение устойчивых золей металлов методом электролиза (Натансон) основано на электролитическом выделении металлов в виде высокодисперсных катодных осадков из водных растворов солей и последующем переводе их в органический растворитель. Схема получения золей сводится к следующему. В нижнем слое двуслойной ванны помещают 2—3%-ный раствор электролита, а в верхний наливают растворитель— обычно жидкий углеводород, к которому добавлено около I % поверхностно-активного вещества, например олеиновой кислоты. [c.103]


    Как уже отмечалось, катодное выделение кобальта сопровождается значительной поляризацией, причем последняя проявляется сильнее в сульфатных растворах, чем в хлоридных. Большая величина поляризации делает возможным совместное выделение на катоде кобальта и водорода и таких электроотрицательных примесей, как железо. Для снижения скорости выделения водорода электролиз следует вести из возможно менее кислых растворов. [c.96]

    Таким образом, условия, благоприятствующие получению надсерной кислоты, следующие высокая концентрация серной кислоты, низкая температура и высокая плотность тока, материал анода с высоким перенапряжением выделения кислорода. На катоде надсерная кислота легко восстанавливается, поэтому необходимо отделять анодное пространство от катодного диафрагмой. [c.360]

    Величина / орр объединяет все постоянные, включая и концентрацию ионов водорода в растворе (принимается, что процесс коррозии протекает с выделением водорода за счет катодной реакции разряда водородных ионов). Заменяя, наконец, 0 на 0 и на 1 — 0, так как по условию сумма Од + 0 равна единице, получим окончательную формулу выражающую зависимость силы тока и соотношения анодной и катодной зоны поверхности в следующем виде  [c.256]

    В разд. 2.4 восстановление ионов водорода описано как одна из основных катодных реакций, кото происходит при коррозии металлов в водных растворах. Шкясольку выделения водорода следует ожвдать при катодной полафйзации металла, то иногда трудно себе представить, что такая реакция возможна в условиях анодной поляризации тйл не менее подобные наблюдения — ч,астое явление при локализованных коррозионных процессах, которые рассматривались в этой главе питтинге, коррозионном растрескивании, коррозионной усталости. Подобные местные катоды мб возникнуть вследствие разности потенциалов, существующих менс поверхностью образца и внутренним элементом, доступ к которому затруднен,. Это, также часто связано с пассивными металлами. В о их случаях большую роль играют также наблюдаемые изменения pH (часто, яо не всегда в сторону подкисления). [c.208]

    Под суммарной, или общей, электродной реакцией понимается весь процесс превращения исходпы.х веществ в конечные продукты под де ствис,м электрического тока. Так, например, суммарную катодную реакцию при выделенни серебра из цианистого комплекса следуем запнса 1Ь как [c.295]

    Еще менее выяснен механизм выделения водорода на металлах железной группы. Установлено, что в условиях катодной ноляриза-ции на поверхности этих металлов накапливается избыточное количество адсорбированного водорода. Это следует, в частности, и < опытов по электродиффузии водорода через железо, которые привели примерно к тем же результатам, какие были получены на нал ладин. Наклон постоянной Тафеля Ь для металлов группы желез  [c.418]

    На подчиненную роль кристаллизационных факторов в явлениях иеренаиряжения указывают также данные по кинетике катодного выделения растворимых в ртути металлов на соответствующих амальгамах. Результаты кигетического исследования реакций обмена металлическими ионами между разбавленными амальгамами и растворами нитратов ук.азывают на уменьшение тока обмена в следующем ряду  [c.460]

    Систематические исследования влияния состава раствора на кинетику электроосаждеиия металлов (Зылп начаты в 1917 г. Н. А. Изгарышевым. Было установлено, что при катодном выделении металлов из растворов их простых солей существенное значение имеет природа аниона соли. Влияние природы аниона на перенапряжение и на характер образующихся осадков наблюдается для многих металлов, но наиболее сильно оно проявляется для металлов, выделение которых не сопровождается высокой поляризацией. Обычно перенапряжение уменьшается при переходе от одного аниона к другому в следующем порядке  [c.461]

    Допущение о том, что выделение металла совершается не как последовательная стадийная реакция, а как один элементарный акт, противоречит всем результатам, полученным при изучении кинетики различных электрохимических процессов. Например, для реакции катодного выделения водорода принятие такого допущения привело бы к не отвечающему действительности выводу о независимости водородного перенапряжения от природы металла. Чтобы объяснить связь, существующую между металлическим перенапряжением и природой металла, а также характер влияния состава раствора на величину перенапряжения, необходимо принимать во внимание не только начальное и конечное состояния металлических ионов, но и природу элементарных актов. При зтом следует учитывать состояние и озойства реагирующих частиц на разных стадиях суммарного процесса. [c.466]

    Ранее считалось, как само собой разумеющееся, что поверхность катода всегда отрицательна, причем тем более отрицательна, чем менее электроположителен электродный металл. Эта точка зрения, сохранившая известное распространение и в настоящее время, ошибочна. Заряд поверхности металла не определяется ни той ролью, какую металл играет в электрохимическом процессе (т. е. является ли он катодом или анодом), ни его электродным потенциалом в данных условиях. Заряд поверхности электрода можно оценить, если воспользоваться предложенной Л. И. Антроповым приведенной, или ф-шкалой потенциалов. Потенциал электрода в ф-шкале представляет собой разность между его потенциалом II данных конкретных условиях (например, в процессе электроосаждеиия металла) и соответствующей нулевой точкой. Потенциал электрода в приведенной шкале служит мерой заряда поверхности и позволяет предвидеть, адсорбция каких именно ионов будет наиболее вероятной в данных условиях. Это положение можно проиллюстрировать на примере катодного выделения никеля, цинка, кадмия н сви1ща из растворов их простых солей. Все эти металлы выделяются при отрицательных потенциалах (по водоро/ ной шкале), которые в обычных режимах электролиза имеют следующие значения —0,80 В (Ni), —0,80 В (Zn), —0,45 В ( d) и —0,15 В (РЬ). Их потенциалы в приведенной шкале, т. е. заряды, можно оценить, воспользовавшись данными о нулевых точках этих металлов (см. табл. 11.6)  [c.469]

    Анализируя изложенные способы повышения коррозионной стойкости сплавов, необходимо отметить, что рациональный выбор состава сплава зависит от условий его эксплуатации и должен быть основан на усилении основного контролирующего фактора коррозии. Так, если сплав в данных условиях не склонен к пассивации и корродирует в активном состоянии с выделением водорода, то следует находить методы цовышения катодного контроля увеличением перенапряжения водорода или [c.39]

    Скорость разрушения может быть значительной и в разбавленных, и в концентрированных щелочах. По этой причине при катодной защите алюминия следует избегать перезащиты, чтобы не допустить разрушения металла в результате концентрирования щелочей на катодной поверхности. Агрессивны по отношению к алюминию известь Са(0Н)2 и некоторые высокоосновные органические амины (но не НН40Н). Свежий портландцемент содержит известь и также агрессивен, поэтому на поверхности алюминия при контакте с влажным бетоном может наблюдаться выделение водорода. После отверждения бетона скорость коррозии уменьшается. Однако, если он увлажняется или содержит гигроскопичные соли (например, СаСУ, коррозия продолжается. [c.346]

    Из табл. 44 следует, что значения критериев в среде NA E ближе к требованиям теории замедленной рекомбинации. Напротив, при дозировании ингибиторов в коррозионной среде величины критериев больше соответствуют расчетным значе-ниям теории замедленного разряда, то есть в данном случае катодное выделение водорода лимитирует стадия разряда. Таким образом, в присутствии ингибиторов наблюдается выгодная с точки зрения снижения скорости коррозии и наводороживания металла инверсия лимитирующей стадии катодного выделения водорода, которая способствует снижению его окклюзии и, соответственно, охрупчиванию металла. [c.300]

    К недостаткам цианидных электролитов относятся токсичность и неустойчивость состава вследствие взаимодействия цианида натрия (калия) с СО2 воздуха и выделения циановодо-рода необходимость частой корректировки электролита по цианиду натрия (калия) меньшая допустимая катодная плотность тока н более низкий выход по току, чем в кислом электролите склонност ) анодов к пассивации. В цианидных электролитах необходим избыток свободного цианида натрия (калия) для обеспечения устойчивости комплексного соединения, улучшения структуры осадков, увеличения рассеивающей способности электролита и устранения пассивации анодов. Однако большой избыток цианида допускать не следует, так как резко снижается катодный выход но току меди. В качестве активатора анодов в электролит вводят согнетову соль и роданиды. [c.33]

    Из рис. 190 видно, что для определения тока саморастворения металла необходимо проводить экстраполяцию тафелевских участков катодной или анодной кривой до пересечения с горизонтальной линией Е=Ес- Чтобы суммарную катодную и анодную кривые разложить на парциальные кривые выделения водорода и ионизации металла, следует прибегнуть к дополнительным измерениям. Например, скорость растворения металла можно определить методом радиоактивных индикаторов или каким-либо аналитическим методом определения ионов металла в растворе. Скорость выделения водорода можно измерить газометрическим методом. Из рис. 190 видно, что при катодной поляризации электрода скорость выделения водорода возрастает, а скорость растворения металла уменьшается. Таким образом, при помощи катодной поляризации можно защитить металл от коррозии. Это явление называется протект-эффектом и широко применяется при защите металлических конструкций. Катодная защита осуществляется или при помощи внешнего источника тока, или [c.359]

    Следует отметить, что суммарная экспериментальная поляризационная кривая может быть разложена иа парциальные кривые (см. рис. 4.39) лишь при использовании дополнительных неэлектрохимических методов. Например, скорость растворения металла, осо--бенно в области потенциалов, где она очень мала, может определяться радиоизотоп ным или другим аналитическим методом. Скорость выделения водорода можно определить газометрически. Как видно из рис. 4.38 и 4.39. при смещении потенциала в катодную сторону от Е скорость выделения водорода увеличивается, а растворения металла уменьшается. Это явление называют протект-эффектом и широко используют для защиты металлоконструкций от коррозии (катодная защита). [c.272]

    Предполагая, что потенциалы, возникающие в растворах многих органических веществ, имеют водородный характер, можно сделать два вывода. Во-первых, не следует ожидать выделения водорода в газовую фазу при г>0 в количествах, превьш1ающих термодинамически допустимое (при Ег = 29 мВ и комнатной температуре 10% Нг). В значительных количествах водород может появиться только вследствие некоторых побочных процессов, протекающих в приэлектродном слое раствора. Во-вторых, если термодинамический потенциал системы органическое вещество — продукт его окисления лежит значительно ниже обратимого водородного, то этот потенциал не может быть достигнут. Предельное катодное значение потенциала определяется скоростью дегидрирования вещества и перенапряжением разряда Н+, которое мало на металлах группы платины. С этими выводами согласуется большинство экспериментальных результатов по потенциалам разомкнутой цепи в присутствии органических соединений различных классов. [c.287]

    Таким образом, в теории замедленной кристаллизации Фольмера и Эрдей-Груза в процессе катодного выделения металла рассматриваются следующие ва1рианты  [c.331]

    Впервые такая точка зрения на коррозионные процессы была высказана и обоснована А. И. Шултиным. Он предлагает рассматривать растворение меташлов с выделением Нг как элек-трохимичеакий обмен, подобный замещению в растворе ионов меди железом, обоснование которого не усложняется представлением о локальных элементах. Шултин предложил следующий механизм растворения при соприкосновении металла с раствором часть ионов металла, составляющая его кристаллическую решетку, переходит в раствор, оставляя металлическую поверхность заряженной отрицательно возникающий двойной электрический алой, внешнюю обкладку которого в первый момент составляют перешедшие в раствор ионы металла, через некоторое время может прекратить дальнейшее растворение. Однако в результате кинетического взаимодействия раствора часть ионов металла может быть заменена в двойном слое другим и, присутствующими в растворе катионами. Если они имеют менее отрицательную природу, то неизбежно должны будут разрядиться и тем самым вызвать продолжение процесса растворения. Таким образом, роль постороннего включения может сводиться не к образованию элементов, а, к облегчению катодной реакции вследствие понижения на них. [c.412]


Смотреть страницы где упоминается термин Выделение катодное и след: [c.160]    [c.178]    [c.148]    [c.17]    [c.340]    [c.468]    [c.332]    [c.519]    [c.261]    [c.199]   
Введение в электрохимическую кинетику 1983 (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ток катодный

след

след н след



© 2025 chem21.info Реклама на сайте