Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром азота

    Система хром — азот [c.96]

    Водород Титан Хлор Фосфор Углерод Марганец Сера Барий Хром Азот Фтор Никель Стронций Все прочие [c.20]

    Механизм этой реакции не описан, но можно представить правдоподобную последовательность стадий, как показано на рис. 16.4. При облучении карбеновый комплекс переходит в возбужденное состояние, при котором карбеновый углерод приобретает свойства нуклеофила. Атака карбенового углерода на электрофильный иминный углерод и атака хрома азотом приво- [c.274]


    Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

    Разрушение печных труб вследствие воздействия на сталь азота. Впервые разрушения печных труб от действия азота на сталь были обнаружены на установках, где создались условия для диссоциации аммиака на водород и азот. Этот процесс протекает при температурах выше 400 °С, а при температурах более 600 С молекулярный азот диссоциирует с образованием активного атомного азота, который диффундирует вглубь стали и вызывает разупрочнение ее структуры. С этим явлением пришлось столкнуться п зи изучении работы ядер-ных реакторов, где отвод тепла осуществляется током чистого азота. Особенно активно реагируют с ним нержавеющие стали, содержащие хром, алюминий, титан и другие легирующие элементы. [c.161]

    Мнение о причинах разрушения печных труб, высказанное зарубежными специалистами [42] совпадает с выводами советских ученых о влиянии азота на свойства стали с высоким содержанием хрома и никеля. [c.163]

    Обозначения в марках стали Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, В — вольфрам, Ф — ванадий, Т — титан, Д — медь, Ю — алюминий, Б — ниобий, Р — бор, А — азот (в конце обозначения не ставятся). Наличие в конце обозначения буквы А обозначает высококачественную сталь, а Ш (через дефис) — особо высококачественную. [c.23]

    Дальнейшее развитие процесса гидроочистки потребовало разработки специфических катализаторов, более активно способствующих гидрированию серы, азота, смол и др. и менее расщепляющих углеводородную часть топлива. В результате были созданы катализаторы на основе окиси хрома, молибдата кобальта, а затем легко регенерируемые молибденовые, никельмолибденовые, кобальтмолибденовые катализаторы, приготовленные на основе окиси алюминия. Особенно широко начали применять алюмокобальтмолибденовый и алюмоникельмолибденовый катализаторы, которые в настоящее время используются на большинстве отечественных и зарубежных установок гидроочистки (см. стр. 238). [c.186]

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]


    Их содержится 1—2 % [226], и для различных месторождений содержание может существенно разниться. Существуют определенные зависимости между содержанием гетероатомов и металлов в смолисто-асфальтеновых веществах [226]. Установлена связь между содержанием серы и ванадия, ванадия и азота нейтрального характера. С содержанием серы коррелируется железо, сурьма, хром. [c.274]

    В этом случае атомы хрома, изменяющие степень окисления от +6 до +3, принимают электроны, а атомы азота, степень окисления которых меняется от — 3 до О, их отдают. [c.77]

    Холодная деформация любой нержавеющей стали обычно оказывает меньшее влияние на стойкость к общей коррозии, если при обработке не достигается температура, достаточная для протекания диффузионных процессов. Фазовые изменения, вызываемые холодной обработкой метастабильных аустенитных сплавов, не сопровождаются существенным изменением коррозионной стойкости . К тому же закаленная аустенитная нержавеющая сталь (с гранецентрированной кубической решеткой), содержащая 18 % Сг и 8 % Ni, имеет примерно такую же коррозионную стойкость, как закаленная ферритная нержавеющая сталь (с объемно-центрированной кубической решеткой), которая содержит такое же количество хрома и никеля, но меньше углерода и азота [11]. Однако, если аналогичный сплав, содержащий смесь аустенита и феррита, кратковременно нагревать при 600 °С, то возникает разница в химическом составе двух фаз и образуются гальванические пары, ускоряющие коррозию. Иными словами, различие в составе, независимо от того, чем оно вызвано, больше влияет на коррозионное поведение, чем структурные изменения в гомогенном сплаве. По-видимому, это можно отнести в целом к металлам и сплавам. [c.302]

    Ион тиоцианата может быть способен к координации либо через серу, либо через азот с образованием структурных изомеров. Однако ни с одним металлом не получены оба таких изомера. В случае Со(1П) и Сг(П1) координация происходит через азот, хотя до недавнего времени считалось, что в последнем комплексе имеется связь М—S. Этот вывод был основан на том, что при окислении таких соединений происходит полное элиминирование тиоцианатной группы [у Со(П1) азот остается координированным], и иод-азидпая реакция дает отрицательный результат, а также на сомнительных спектральных данных [156]. Однако недавно были получены более убедительные химические доказательства, указывающие на наличие связей хром—азот в некоторых тиоцианатных соединениях [224], и это было подтверждено рентгеноструктурным исследованием wipaK -NH4[ r(N S)4(NH3)2] [212], показавшим, что в комплексе имеется шесть связей Сг—N. Специально предпринятая попытка получения тиоцианатного соединения хрома, содержащего связи металл— сора, оказалась безуспешной [55]. Реакция [ o(NH3)5(NS )] с r q должна приводить сначала к образованию [Сг—S N] " через мостиковый тиоцианатный комплекс [c.187]

    Для повышения эрозионной стойкости аустенитных сталей применяют способ одновременного насыщения их хромом, азотом и углеродом. Для этого детали нагревают до 1050° С в течение б ч в смеси, содержащей 2— 3% стандартного карбюризатора (для цементации), 70% металлического феррохрома, обработанного соляной кислотой, 25% А1зОз и 1—2% N1 401. В результате такой обработки можно получить диффузионный слой глубиной до 0,4 мм, содержащий 15—27% Сг, 1,5—2% N и увеличенное количество углерода. Одновременное насыщение стали хромом и азотом приводит к образованию на ее поверхности сплошного слоя нитридов хрома, имеющих твердость порядка НУ 1100— 1600 и обладающих высоким сопротивлением микроударному разрушению. [c.266]

    Хром и малолегированные сплавы на его основе имеют высокую коррозионную стойкость на воздухе и не требуют специальной защиты от окисления. Однако чтобы предотвратить насыщение хрома азотом, все же необходимо поверхностное алитирование, никелирование. эмилирование и нанесение других покрытий (27]. [c.208]

    Другие лиганды, такие, как F" и ОН , являются я-донорамп, а пе я-акцепторами. Снижение заселенности орбитали в таких случаях может привести к более прочному связыванию лиганда. Комплекс [т7гранс-Сг(еп)2Г2] при фотолизе дает (пгракс-Сг(еп) (епН)(Н20)Р2] , связь хром — азот разрывается [105]. Эта реакция является исключением из правила Адамсона, поскольку NH имеет более сильное кристаллическое поле, чем F". Однако даже если возбужденным состоянием является обусловленное обычным возбунодением —dy — dz ), вполне может случиться, что связывание фторид-иона заметно не ослабляется из-за компенсации ст - и я-эффектов. Возбужденная орбиталь все еще имеет dxi-y -компоненту (табл. 3) и связывание амина ослабляется только СТ-, но не я-эффектами. [c.564]

    Античные ученые, как известно, описали десять элементов, средневековые алхимики — четыре (см. гл. 4). В XVIII столетии были открыты такие газообразные элементы, как азот, водород, кислород и хлор, и такие металлы, как кобальт, платина, никель, марганец, вольфрам, молибден, уран, титан и хром. [c.92]

    С ЭТ011 целью газ пропускают над хромоникелевым катализатором, состоящим приблизительно из 95% окиси хрома и 5% никеля. Катализатор получают растворением в воде хромовой кпслоты (Н2СГО4) и азотнокислого никеля, с последующим нагревом раствора при иеремешивапии до полного удаления воды и прекращения выделения двуокиси азота. Частичное гидрирование газов пиролиза, богатых водородом, ведут при температуре около 200° и скорости подачи около 800 л газа (в пересчете на нормальное давление) на 1 л катализатора в час. В газах, бедных водородом, скорость подачи должна быть меньше, а температура выше. [c.71]


    Студенту дали 1,00 г бихромата аммония для получения координационного соединения. Этот образец был сожжен, в результате чего получились оксид хрома(1П), вода и газообразный азот. Оксид хро-ма(П1) заставили прореагировать при 600 С с тетрахлоридом углерода, в результате чего получились хлорид хрома(П1) и фосген (СОСЬ). Обработка хлорида хрома(П1) в избыточном количестве жидкого аммиака привела к образованию хлорида гексамминхрома(П1). Вычислите [c.248]

    Из проведенного ранее обсуждения химических сдвигов ионизационных пиков РФС электронов оболочки можно сделать вывод, что для электронов оболочки всегда наблюдаются простые спектры, например, для каждого заметно различающегося окружения атома азота наблюдается один пик для Ь-электронов азота. К счастью, зто не всегда так [27]. Мы уже видели, что парамагнитные частицы, такие, как О2, вызывают обменные расщепления линий электронов оболочки. Такие же расщепления, обусловленные обменными процессами, обнаружены и в спектрах РФС парамагнитных комплексов ионов переходных металлов. Кларк и Адамс [60] сообщили о Зх-обменном расщеплении хрома величиной около 4,5 эВ в Сг(ЬГа)з и 3,1 эВ в Сг(Ь -С5Н5)2. Может возникнуть вопрос, должен ли анализ такого расщепления способствовать пониманию деталей контактных сдвигов Ферми в ЯМР, наблюдаемых для парамагнитных частиц. [c.353]

    В печах пиролиза установок малой мощности, где топливом служит природный газ и метановодородная фракция, наблюдаются разрушение подвесок, опорных трубных елочек, кронштейнов огнеуперных кирпичей и других деталей. Причиной выхода из строя литых деталей из стали 25Х23М7СЛ является насыщение их азотом, что придает металлу повышенную хрупкость. Азот образует с хромом соединения, которые снижают пластичность, а при появлении в деталях изгибных напряжений происходит быстрое разрушение металла. Результаты изучения характера насыщения металла азотом показали, что поверхность литых деталей подвефгается более интенсивному насыщению азотом, чем деталей, изготовленных методами деформирования изделий (ковкой, штамповкой) и механически [c.172]

    У диамагнетиков (водород, инертные газы и др.) ц < 1. Для парамагнетиков (кислород, оксид азота, соли редкоземельных металлов, соли железа, кобальта и никеля и др.) ц > 1. Ферромагнетики (Ре, N1, Со и их сплавы, сплавы хрома и марганца, Сс1) имеют магнитную проницаемость ц 1. Магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности внешнего поля. Кривая намагничивания В (я) ферромагнетиков имеет вид характерной петли гистерезиса, по ширийе которой различают материалы магнитомягкие (электротехнические стали) и магнитожесткие (постоянные магниты). При определенных значениях напряженности поля индукция достигает насыщения. [c.38]

    Регенерация осушествляется с псевдоожиженным слоем катализатора при противотоке газа-окислителя, поступающего под нижнюю распределительную решетку регенератора. Поскольку необходимо избегать перегревов, ведущих к-дезактивированию катализатора, проводят регенерацию смесью воздуха с газами сгорания топлива, содержащей только 2—3% (об.) кислорода. При этом оксид хрома все же частично окисляется в СгОз, я при восстановлении последнего в реакторе получается вода, вредно влияющая на свойства катализатора. Во избежание этого в десорбер регенератора подают топочный газ, восстанавлнвающпй катализатор, и еще ниже—азот, отдувающий пары воды и газы сгорания. После этого регенерированный катализатор при 640—650°С подхватывают транспортирующим газом и возвращают в реактор. [c.493]

    Фтор реагирует со всеми металлами на холоду, хлор — при нагревании, бром—только с хромом и молибденом, иод — только с хромом. С азотом металлы группы хрома р.заимодействуют при температурах выше 1000 "С с образованием нитридов. С серой и фосфором при высоких температурах порошкообразные металлы взаимодействуют с образованием разнообразных по составу сульфидов и фосфидов. [c.282]

    Ассортимент минеральных солей, используемых в сельском хозяйстве, промьнилениости и быту, составляет сотни наименований и непрерывно растет. Масштабы добычи и выработки солей чрезвычайно велики некоторые минеральные соли и удобрения являются многотоннажными продуктами химической промышленности, и их добыча и производство выражаются в миллионах, а иногда и десятках миллионов то[гн в год. В наибольших количествах вырабатывают и потребляют соединения натрия, фосфора, калия, азота, алюминия, железа, меди, серы, хлора, фтора, хрома, бария и др. [c.139]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Вгг NBr NJ СО2 S2 I2 Сг(СО)б Циан бромистый........ Циан иодистый........ Углерода двуокись. ..... Сероуглерод. ........ Хлор Хрома гексакарбонил..... 10,55 10,8 10,6 13,79 10,08 11.48 8,03 N2H4 NO NO2 N2O №(С0)4 О2 W( O)j Г идразин........... Азота окись.......... Азота двуокись. ....... Азота закись......... Никеля тетракарбонил..... Кислород........... Вольфрама гексакарбонил. . . 9,56 9,25 12,3 12,90 8,28 14,01 8,18 [c.329]

    Технологическая схема установки изображена на рис. 11.1. Сырье поступает в испаритель 1 и далее в печь 2, пройдя предварительно закалочные змеевики реактора 4. Из печи выходят пары с температурой 500—550 С. Пары углеводородов подаются в нижнюю часть реактора и с высокой скоростью поднимаются вверх, проходя слой катализатора. Во избежание образования избирательных потоков верхняя часть реактора может быть секционирована с помощью провальных тарелок (о конструкции реактора см. т. 1, гл. 3). Необходимое для протекания реакции количество теплоты подводится с потоком нагретого регенерированного катализатора из регенератора 5. Реактор и регенератор соединены двумя и-образными трубопроводами, по одному из которых зауглероженный катализатор выводится из реактора в регенератор, а по другому — возвращается регенерированный катализатор. Транспортирование катализатора в регенератор осуществляется потоком воздуха, а в реактор — парами исходного углеводорода или азотом. В-регенераторе, помимо выжига кокса, протекают процессы окисления хрома, а также десорбции продуктов регенерации (СО, Oj, HjO) с поверхности катализатора. С целью более полного сгорания кокса, а также частичного восстановления хрома в регенератор подается топливный газ. Регенератор также [c.351]

    Для исследования были выбраны соли хрома, марганца, меди, цинка (первый переходный период), циркония и молибдена (второй переходный период). Приготовленные бензольные растворы пиридина А хинолина с известной концентрацией ( 0,2% азота) или дизельное топливо (0,024 % основного азота 0,04% общего азота) пропускались через слой исследуемой соли, помещенной в колонку диаметром 10 мм при комнатной температуре. Время обработки составляло 4 ч. Соотношение количества соли и раствора составляло 1 (по весу) с той целью, чтобы различие в свойствах солей были более отчетливы. Концентрация растворов определялась потенциометрически, как описано в [19], после промывки растворов горячей дистиллированной водой и осушки поташом в течение суток. Достоверность результатов была проверена сравнением данных, полученных по методу Кьельдаля и потенциометрического титрования. Было установлено, что присутствие следов металлов в титруемом растворе не влияет на положение точки эквивалентности. Таким образом была определена степень удаления азота из бензольных растворов пиридина и хинолина солями железа — хлорным, хлористым, азотнокислым окисным, ферри-цианидсм калия и хлористым цинком. Результаты приведены в табл. 1. [c.110]

    Новым направлением в фиксации атмосферного азота является так называемый ферментативный метод с использованием комплексных соединений переходных металлов (железа, хрома, молибдена), в котором используется принцип естественной фиксации азота растениями в прирбдных условиях  [c.186]

    Образование комплексов. Азотсодержащие соединения нефтей за счет неподеленных пар электронов азота способны образовывать донорно-акцепторные связи и комплексные соединения с галогенами, солями металлов ртути, цинка, олова, хрома(П1), меди (II) и других, карбонилами железа [207]. Однако из-за наложения электрических моментов диполя серу-, азот- и кислородсодержащих соединений, например для иодидов, амино-, тио- и ал-коксицодидов (6,67—33,33) 10 Кл-м с помощью комплексообразования невозможно селективное выделение или разделение этих классов соединений. [c.91]

    Аустенитные стали получили свое название по аустенитной фазе или 7-фазе, которая существует в чистом железе в виде стабильной структуры в температурном интервале от 910 до 1400 °С. Эта фаза имеет гранецентрированную кубическую решетку, немагнитна и легко деформируется. Она является основной или единственной фазой аустенитных нержавеющих сталей при комнатной температуре и в зависимости от состава имеет стабильную или метастабильную структуру. Присутствие никеля в значительной степени способствует сохранению аустенитной фазы при закалке промышленных сплавов Сг—Ре—N1 от высоких температур. Увеличение содержания никеля сопровождается повышением стабильности аустенита. Легирование марганцем, кобальтом, углеродом и азотом также способствует сохранению при закалке и стабилизации аустенита. Аустенитные нержавеющие стали могут упрочняться холодной обработкой, но не термообработкой. При холодной обработке аустенит в метастабиль-ных сплавах (например, 201, 202, 301, 302, 302В, 303, ЗЗОЗе, 304, 304Ь, 316, 316Ь, 321, 347, 348 см. табл. 18.2) частично переходит в феррит. По этой причине указанные стали и являются метастабильными. Они магнитны и имеют объемно-центрирован-ную кубическую решетку. Этим превращением объясняется значительная степень упрочнения при механической обработке. В то же время стали 305, 308, 309, 3098 при холодной обработке слабо упрочняются, и если и становятся магнитными, то в очень малой степени. Сплавы с повышенным содержанием хрома и никеля (например, 310, 3108, 314) имеют практически стабильную аустенитную структуру и при холодной обработке не превращаются в феррит и Не становятся магнитными. Аустенитные нержавеющие стали очень широко применяют в различных областях, включая строительство и автомобильное производство, а также в качестве конструкционного материала в пищевой и химической промышленности. [c.297]

    Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9]. [c.301]

    Склонность аустенитных нержавеющих сталей к межкристаллитной коррозии зависит от содержания в них углерода. Малоуглеродистая сталь (<0,02% С) относительно стойка к коррозии этого типа [151. Азот, обычно присутствующий в промышленных сплавах в количествах, достигающих нескольких сотых процента, не столь сильно способствует разрушениям, как углерод (рис. 18.3) [16]. При высоких температурах (например, при 1050 °С) углерод почти равномерно распределен в сплаве, однако в области температур сенсибилизации (или при несколько более высоких температурах) он быстро диффундирует к границам зерен, где соединяется преимущественно с хромом с образованием карбидов хрома (например, МазСв, в котором М обозначает хром и небольшое количество железа). В результате этого процесса прилегающие к границам зерен участки сплава обедняются хромом. Его содержание может упасть ниже 12 %, которые необходимы для поддержания пассивности. В местах превращений объем сплава меняется, и это изменение объема распространяется от границы зерен на небольшое расстояние в глубь зерна. В результате на протравленной поверхности наблюдается расширение границ зерен. В сплаве, обедненном хромом, образуются активнопассивные элементы с заметной разностью потенциалов. Зерна представляют собой катодные участки большой площади по сравнению с небольшими анодными участками границы зерен. Протекание электрохимических процессов приводит к сильной коррозии вдоль границ зерен и проникновению агрессивной среды в глубь металла. [c.305]


Смотреть страницы где упоминается термин Хром азота: [c.28]    [c.287]    [c.392]    [c.66]    [c.158]    [c.34]    [c.163]    [c.173]    [c.178]    [c.218]    [c.287]    [c.125]    [c.204]    [c.86]    [c.214]   
Физические методы анализа следов элементов (1967) -- [ c.177 ]




ПОИСК







© 2024 chem21.info Реклама на сайте