Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан строение

    До систематических работ Б. А. Казанского и М. Ю. Лукиной имеющиеся в литературе многочисленные сведения о легкости и направлении разрыва С—С-связей в циклопропанах были весьма противоречивы и не поддавались сравнению из-за значительных различий в условиях проведения этих реакций (см. обзоры [64— 66]). Например, если никель на кизельгуре вызывает полное превращение циклопропана в пропан уже при 0°С [67], то в присутствии никеля на пемзе для такого превращения необходима температура 180 °С [68]. Весьма противоречивы и другие данные. Так, согласно [69], для гидрогенолиза циклопропана нужна более высокая температура, чем в случае его гомологов, а согласно [70—72],— наоборот. Противоречивые данные имелись и в отношении направления разрыва кольца пр1 гидрогенолизе гомологов циклопропана. При наличии заместителя раскрытие трехчленного цикла происходит в основном по наиболее гидрогенизованным связям цикла, образуя изоалканы (направление 1) [73], однако в ряде других работ [64, 66] указывалось, что раскрытие цикла происходит у наименее гидрогенизованных атомов с образованием алканов нормального строения (направление 2)  [c.100]


    Н2С(00Я )—НС(ООН")—Н2С(ООК"0- в этой формуле символами R Я" и К " обозначаются углеродные цепи из 8—22 атомов насыщенного или ненасыщенного характера. В сырых продуктах находятся еще и другие соединения, но в небольших количествах, как-то свободные жирные кислоты, фосфатиды, стиролы, протеины, витамины, токоферол и др. В зависимости от назначения жиры и масла подвергаются соответствующей обработке, цель которой—разделение сырой смеси на разные группы соединений (насыщенных и ненасыщенных глицеридов), отвечающие по своим свойствам требованиям потребителей особенно ценной является фракция витаминов. Экстракция является одним из методов разделения, обеспечивающих наибольший выход и высшее качество продуктов по сравнению с другими методами, например химическими, что объясняет ее широкое применение. Растворителями служат преимущественно жидкости полярного строения нитропарафины, ЗОз, сульфоналы, фурфурол [139, 151, 153, 157], метанол с этанолом [144], пропан [148], ацетон [156], изопропанол с этанолом [141] идр. [154]. В промышленных установках применяются пропан и фур- [c.406]

Рис. 16. Зависимость растворимости смол и углеводородов различного строения в пропане от температуры Рис. 16. <a href="/info/693382">Зависимость растворимости</a> смол и углеводородов различного строения в пропане от температуры
    Первые три члена парафинового ряда (метан, этан и пропан) могут иметь только следующее строение  [c.10]

    Хотя деасфальтизация пропаном не принадлежит к процессам экстракции растворителем, целесообразно рассмотреть ее здесь, так как она часто тесно связана с этими процессами. Деасфальтизация пропаном представляет собой процесс удаления асфальта из остаточных продуктов осаждением. Асфальт состоит главным образом из высокомолекулярных углеводородов, имеющих сложное строение в виде молекул с большим числом конденсированных колец 1, вместе с небольшими количествами неуглеводородных соединений, находящихся в нефтяных остатках. [c.198]

    Термическое алкилирование заметно отличается от каталитического алкилирования по нескольким признакам. Пропан и другие парафиновые углеводороды нормального строения, как и изопарафины, могут подвергаться термическому алкилированию. Об алкилировании метана и этана с практически приемлемыми выходами пока еще не имеется сообщений. С другой стороны, только парафиновые углеводороды с третичным углеродным атомом дают удовлетворительные выходы при каталитическом алкилировании. Термическое алкилирование наиболее легко протекает с этиленом, менее легко с пропиленом и н-бутиленами и еще труднее с изобутиленом. Для каталитического алкилирования справедлив обратный порядок. [c.305]


    Дисульфохлориды, образующиеся при сульфохлорировании пропана, н-бутана и изобутана, очень просты по строению. Причина этого заключается в том, что две сульфохлоридные группы не вступают ни в вицинальное, ни в геминальное дизамещение, а также в том, что, как уже упоминалось, третичный водородный атом не сульфохлорируется. Так, в случае пропана в качестве единственного дисульфохлорида образуется пропан-1,3-дисульфохлори1Д, в то время как в случае н-бутана образуются два дисульфохлорида, а именно бутан-1,3-дисульфохлорид и бутан-1,4-дисульфохлорид. Изобутан дает только один дисульфохлорид, а именно 2-метилпропан-1,3-дисульфохлорид. [c.380]

    Растворимость в пропане органических соединений разного строения неодинакова. Наибольшее стремление выделиться из раствора проявляют те компоненты, молекулы которых наиболее сильно взаимодействуют между собой и особенно слабо с молекулами пропана. Практически нерастворимыми являются асфальтены при достаточном расходе растворителя они выделяются из раствора при любых температурах. Далее растворимость уменьшается в такой последовательности смолы, полициклические и моноциклические ароматические углеводороды с алкильными боковыми цепями, парафино-нафтено-вые углеводороды. Это и используют при проведении процесса деасфальтизации. [c.39]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Пропан является предельным углеводородом нормального строения и имеет следующие-основные свойства. [c.212]

    Если смесь, которую нужно разделить вымораживанием, обладает повышенной вязкостью, мешающей кристаллизации, к этой смеси добавляют подходящий растворитель. Растворитель должен быть легко летучим (этан, пропан, диметиловый эфир, ацетон), что обуславливается необходимостью его последующего удаления, Примером. может быть выделение парафиновых углеводородов нормального строения пз масляных фракций. [c.13]

    С карбамидом в том случае, если в основной цепи содержится не менее 10 атомов углерода. Циклические углеводороды способны к комплексообразованию при наличии боковых цепей нормального строения с числом атомов углерода 20—25. Известно также о кратковременном существовании неустойчивых комплексов карбамида с н-бутаном и даже с пропаном [13]. При пониженных температурах (ниже —19 °С) н-пентан образует весьма непрочный комплекс с карбамидом [14], что подтверждается началом его разложения уже при 10—12°С. Из смеси пентанов нормального и изостроения при температурах минус, 35—45 °С, давлении 0,1 — 0,2 МПа (1—2 кгс/см ) и длительности контактирования 3 ч можно извлекать н-пентан комплексообразованием с карбамидом. [c.198]

    Тривиальные названия не вытекают из каких-либо единых систематических принципов номенклатуры они не выражают строения соединения и обычно отражают историю, происхождение веществ, выделение их из природных продуктов, путь синтеза и т. п. (например, рудничный газ, муравьиная кислота, винный спирт, бензол, ванилин, стрептоцид). Многие соединения названы по имени ученого, открывшего их (кетон Михлера, углеводород Чичибабина и т. п.). Однако и некоторые тривиальные названия приведены в известную систему. Так, в ряду метана все названия углеводородов, начиная от С5, являются систематическими — корни их производятся от греческих числительных, и все они имеют общее окончание -ан (пентан, гексан, гептан) и т. д. (ср. стр. 306) названия же первых четырех представителей этого ряда (метан, этан, пропан, бутан) — тривиальные, так как корни их не образованы по какой-либо системе, однако и эти названия имеют общее для ряда метана окончание -ан. Такие [c.270]

    Соединения с близкими химическими свойствами, отличающиеся по строению друг от друга на одну или несколько групп СНз, составляют так называемый гомологический ряд, а отдельные члены этого ряда называются гомологами. Ряд углеводородов, который мы рассматриваем (метан, этан, пропан и т. д.), является гомологическим рядом предельных углеводородов. Поэтому можно сказать, что гексан является гомологом этана или метана, пентан — гомологом метана или бу тана и т. д. [c.25]

    Строение предельных углеводородов. Каждый предельный углеводород можно произвести от соответствующего предыдущего члена гомологического ряда путем замещения одного атома водорода метилом тем самым состав молекулы усложняется на группу СНз (метилен). Таким путем от метана производим этан и от этана—пропан  [c.47]

    Из числа углеводородов, входящих в состав нефтей, такие, например, как метан, этан, пропан, н-бутан, н-пентан, гептан и его изомеры, циклогексан, бензол, нафталин являются неполярными. Нафтеновые кислоты, фенолы, некоторые сернистые, азотистые соединения, а также ряд углеводородов асимметрического строения, а также, смолы, относятся к соединениям полярным. [c.60]

    Так, углеводороды этан ( aHg) и пропан (СаНз) содержат >пи соответственно из двух и трех атомов углерода. Строение их. гражают следующие структурные и электронные формулы  [c.455]


    Алкены простого строения часто называют, заменяя окончание -ан в предельных углеводородах на -илен этан — этилен, пропан— пропилен и т. д. Употребляют иногда и рациональные названия. В этом случае этиленовые углеводороды рассматривают как производные этилена  [c.63]

    Оба эти изомера имеют одинаковое строение углеродного скелета, отвечающее только углеводороду СН3—СН —СН3—пропану, и различаются лишь положением в цепи гидроксила. [c.134]

    Молекулярное просеивание . В зависимости от размера и формы молекул молекулярные сита 4А легко адсорбируют такие соединения, как вода, двуокись углерода, сероводород, сернистый ангидрид и все углеводороды, содержащие 1—2 углеродных атома в молекуле. Пропан и более высокомолекулярные углеводороды физически не могут адсорбироваться за исключением пропилена, который адсорбируется значительно прочнее и поэтому может проникать через поры адсорбента. Сита типа 5А. помимо соединений, адсорбируемых ситами 4А, могут адсорбировать алканы, алкены и спирты нормального строения до С22, а возможно, и выше. Молекулы разветвленного и циклического (нафтеновые и ароматические) строения не адсорбируются за исключением циклопропана. [c.205]

    Номенклатура органических соединений. Систематическая номенклатура органических соединений исходит из строения молекулярного скелета соединений. Названия соединений составляются из корня и приставок (суффиксов). В на 5ваниях предельных углеводородов используется приставка ан, непредельных с одной двойной связью — ен, непредельных с двумя двойными связями — диен, непредельных с тройной СВЯЗ11Ю — ин. Корни наименований в зависимости от числа углеродных атомов в скелете образуются ИЗ греческих числительных С5 — пент, Се — гекс, С — гет, Са — окт и т. д., первые четыре предельные углеводорода с нормальной (не разветвленной) цепью имеют эмпирические названия С — метан, С2 — этан, С3 —пропан, С4 — бутан. В названиях алициклических углеводородов перед корнем ставится приставка цикло , а после корня — соответствующие суффиксы ан, ен, диен. Названия соединений, содержащих различные функциональные группы, составляются из названия углеводорода, произ- [c.143]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    Вода Метанол Аммиак Сероводород Сернистый ангидрид Двуокись углерода Этилен Этан Пропилен н-Бутанол и высшие спирты нормального строения Бутен и высшие к-алкены Пропан и высшие н-алканы до Си Циклопропан Хладагент К-12, Изобутан и все изоалканы Бензол и все ароматические углеводороды Циклогексан и все циклические углеводороды с четырехчленными и большими циклами [c.69]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]

    Параметры смеси сжиженных газов благодаря идентичности строения молекул приближенно пропорциональны концентрациям и параметрам отдельных компонентов. Следовательно, для нахождения параметров необходимо определить состав смеси, что в эксплуатационной практике сделать трудно. Все же по некоторым параметрам, например температуре кипения при атмосферном давлении или давлению и температуре смеси в сосуде, можно судить об условном составе (с достаточной точностью для эксплуатационных нужд). Это наиболее просто сделать для смесей, содержащих только пропан и бутан (рис. 1-23). [c.34]

    Представление об изомерии. Вернемся еще раз к выводу структурных формул гомологов предельных углеводородов. Мы видели, что при замене атома водорода в молекуле этана ме-тильной группой СНз получается углеводород пропан. Строение этана можно передать только одной единственной формулой. Это объясняется тем, что в этане СНз—СНз, состоящем из двух ме-тильных групп, все шесть водородных атомов равноценны, поскольку они равноценны в метане. В молекуле же пропана имеются различные атомы водорода шесть из них (взяты в кружки) соединены с концевыми атомами углерода и входят в состав ме-тильных групп, а два (взяты в квадраты) —со средним атомом углерода и входят в состав метиленовоц группы  [c.25]

    Представление об изомерии. Вернемся еще раз к выводу структурных формул гомологов предельных углеводородов. Мы видели, что при замене атома водорода в молекуле этана ме-тильной группой СНз получается углеводород пропан. Строение этана можно описать только одной формулой. Это объясняется тем, что в этане СНз—СНз, состоящем из двух метильных групп, все шесть водородных атомов равноценны, так же как они рав- [c.23]

    Только один индивидуальный жидкий углеводород — 9-к-бутилантрацен — яе полностью растворим в пропане при температуре, близкой к комнатной [17]. Выло исследовано шесть индивидуальных углеводородов со сложным циклическим строением. Они бы.ли получены по Проекту 42 Американского нефтяного института (синтез и свойства тяжелых углеводородов). За предоставление этих образцов в количестве 1 г каждого выражается благодарность проф. Р. В. Шисслеру из Пенсильванского государственного колледжа. [c.198]

    Начиная с 1963 г. появился ряд сообщений о синтезе и свойствах ненасыщенных полиарилатов, содержащих при ароматических ядрах аллильные группы Такие полиарилаты были получены поликонденсацией дихлорангидридов дикарбоновых кислот с диал-лильным производным дифенилолпропана — 2,2-бис-(4 -окси-3 -ал-лилфенил)-пропаном — или со смесью этого диаллильного производного с фенолфталеином, дифенилолпропаном и другими двухатомными фенолами. Строение этих полиарилатов можно представить формулой  [c.48]

    Следующая температурная ступень (250—300° С) не дает существенного вклада в спектр. Однако для интервала 300—350° С характерно значительное увеличение интенсивности основных групп пиков с массовыми числами выше 100, характеризующих появление фрагментов алкилбензтиазолов и алкилтиофенов, при этом алкильный радикал содержит не более четырех атомов углерода. В масс-спектре этой ступени имеются ионы с массами выше 200, однако их интенсивность очень мала. При 350° С основную часть алифатических заместителей конденсированных ядер составляют короткие цепочки нормального строения (главным образом метан, этан, пропан и в меньшей мере бутан и пентан). После 380° С начинается общая деструкция асфальтенов. [c.230]

    Углеводородные природные газы состоят из простейших представителей парафиновых, или, как их называют, метановых углеводородов. Сюда относятся метан СН4, этан jHe, пропан aHg, бутан и изобутан, имеющие формулу СШ . В природных нефтяных газах присутствуют и пары наиболее летучих жидких углеводородов. Строение простейших парафиновых углеводородов следующее  [c.233]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    Разработан метод установления углеродного скелета серу-, кислород- и азотсодержащих соединений, основанный на гидрировании в присутствии палладиевого или платинового катализатора [143]. При гидрогенолизе образуется соответственно сероводород, вода, аммиак и углеводороды, газохроматографическим анализом которых определяют строение углеродного скелета гетероатомных соединений. Так, при гидрировании этилбензилсульфида кроме сероводорода образуются только этан и толуол, из метнлпропил-сульфида — метан и пропан и т. д. [144]. [c.127]

    Растворимость углеводородов масляного сырья в пропане в области повышенных температур (75—90 °С) уменьшается с увеличением их плотности и молекулярной массы. Смолы и особенно асфальтены — наименее растворимые в жидком пропане компоненты сырья на этом основано использование пропана как деасфальтирующего растворителя. При дальнейшем повышении температуры выделяются высокомолекулярные углеводороды полицик-личеокого строения, в растворе остаются малоциклические углеводороды с длинными алкильными цепями. Растворимость поли- [c.79]

    Н. В. Фок, Б. Б. Береславский, А. Б. Налбандян и В. Я. Штерн [56] показали, что при фотохимическом сенсибилизированном ртутью окислении пропана, проводимом в струевых условиях, малых временах контакта и комнатной температуре, весь окисленный пропан переходит в гидроперекись пропила изо-строения. Гидроперекись была констатирована не [c.116]

    В соответствии со строением полимера полипропилен имеет хорошие диэлектрические свойства. Они не хуже, чем у полиэтилена, и практически не зависят от частоты тока и от изменения йлажности. Сочетание хороших диэлектрических свойств с высокими физико-механическими показателями открывает широкую область применения полипропилена для радио и электротехнических деталей и в качестве кабельной изоляции. При этом важно принять во внимание дешевизну и доступность сырья — пропилена, находящегося в больших количествах в пропан-пропиленовой фракции крекинг-газа. [c.107]

    Номенклатура. При громадном числе органических соединений чрезвычайно важно установить единые правила составления их названий (номенклатуры). Наиболее последовательной и строгой является современная научная номенклатура органических соединений, предложенная Международным Союзом теоретической и прикладной химии ШРАС. В основу этой номенклатуры органических соединений взяты названия предельных углеводородов нормального строения. Характерным в названии предельных углеводородов является суффикс -ан. Наименования первых четырех членов ряда предельных углеводородов сложились традиционно метан, этан, пропан, бутан. Названия следующих углеводородов этого ряда образуются из названий греческих чисел и суффикса ан С Нц — пентан, СвН14 — гексан С,Н1в — гептан и т. д. [c.122]

    Изомерия предельных углеводородов. Вернемся к выводу формул строения более сложных предельных углеводородов путем последовательного замещения атома водорода в молекуле более простого углеводорода на радикал метил (стр. 39). Как было указано, из этана СаНв таким образом может быть выведен пропан — углеводород состава СдН , которому соответствует одновалентный радикал пропил состава СдН- —. Напишем еще раз упрощенную структурную формулу пропана, обозначив в ней атомы углерода [c.40]

    Заменяя при этом синтезе фенол дифенолом или диоксифенилалканом, например 2,2-бис(4-оксифенил) пропаном, получают полимер следующего строения  [c.333]

    Кекуле, считая, что Се-группировка бензола присутствует во всех ароматических соединениях, применил другой метод решения этой проблемы. Он занялся определением числа продуктов замещения. Тот факт, что пропан имеет два моно-, четцре ди- и пять трихлорпроизводных, может быть приведен в качестве важного доказательства его строения. Критически оценив неполные и частично ошибочные данные, имеющиеся в его распоряжении, Кекуле заключил, что бензол должен иметь строение, которому отвечает один монозамещенный и три дизамещенных продукта. Кекуле показал, что это условие может быть выполнено только в случае принятия для бензола циклической формулы. В цикле из шести углеродных атомов, каждый из которых связан с одним атомом водорода, все шесть возможных положений для одного заместителя равноценны и возможно наличие трех дизамещенных производных. Положение заместителей в ди- и тризамещенных производных бензола приведено ниже  [c.119]

    Асфальтены [221] рассматриваются как продукт уплотнения смол. В свободном виде они представляют собой твердые неплавящиеся хрупкие вещества черного или бурого цвета. В отличие от других компонентов битумов они нерастворимы в насыщенных углеводородах нормального строения (Сз—С7), а также в смещанных полярных растворителях — спирто-эфирных смесях и низкокипящих спиртах, в нефтяных газах (метане, этане, пропане и др.), но легко растворимы в жидкостях с высоким поверхностным натяжением более 24 дин1см (24 мн/м) — бензоле и его гомологах, сероуглероде, хлороформе и четыреххлористом углероде. [c.12]

    Эта реакция нромотируется обеими функциями катализаторов риформинга, т. е. гидрирующей и кислотной. Это означает, что в данном случае применим ионный механизм, предложенный для реакций крекинга [17, 36] но здесь крекинг сопровождается мгновенным насыщением осколков, ведущим к образованию парафиновых углеводородов. Следовательно, при реакциях гидрокрекинга может и фактически протекает скелетная перегруппировка. Например, было показано [24], что в качестве основных продуктов гидрокрекинга к-гептана образуются пропан и изобутан наряду с меньшими количествами других продуктов и, разумеется, сравнительно глубокой изомеризацией исходного к-гептана. Работы по изучению изомеризации различных парафиновых углеводородов на никель-алюмосиликатном катализаторе [И ] обнаружили высокую степень превращения в ппзкокипящие парафиновые углеводороды наряду с изомеризацией в изомеры разветвленного строения. Например, к-октап при 380°, давлении 25 ат, объемной скорости (по жидкому сырью) 1 час и молярном отношении водород углеводород 4 1 почти полностью превращается в продукт, состоящий главным образом из пропана, изо- и к-пентана и смешанных бутанов. При более низкой температуре наблюдается ослабление реакции крекинга и более глубокая изомеризация в изомерные октаны. Следует отметить, что состав и метод приготовления катализатора оказывают, сильное влияние на протекание реакции гидрокрекинга этим путем можно достигнуть образования более крупных осколков. Если гидрирующая активность катализатора значительно преобладает над его кислотной активностью, то протекает реакция деметилирования, которая представляет особый случай гидрокре- [c.210]

    ГАЗОВЫЕ КОНДЕНСАТЫ (газоконденсаты), смеси углеводородов разл. строения, в осн. с 1, п 30—250 °С, конденсирующиеся из прир. иефт. газов при их добыче на т. н. газоконденсатных месторождениях. В последних прир. газ находится под высоким давл. (до 25—30 МПа), вследствие чего в нем растворено нек-рОе кол-во высококипящих углеводородов (12—500 см м ). Г. к. собирают и передают на нефтеперераб. з-ды для разделения на фракции, используемые при нолуч. бензина и дизельного топлива. Из легко-к ипящих фракций выделяют нек-рое кол-во смесн пропан - - бутаны (т. н. сжиженный газ). [c.116]


Смотреть страницы где упоминается термин Пропан строение: [c.11]    [c.193]    [c.316]    [c.15]    [c.60]    [c.39]    [c.575]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.52 , c.84 ]

Органическая химия (1974) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропанои



© 2025 chem21.info Реклама на сайте