Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан окисление

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Пропан. Окисление пропана изучено, вероятно, в большей степеии, чем окисление любого другого предельного углеводорода. Это не привело, одиако, к достаточно убедительному объяснению всех наблюдаемых явлений, а лишь слегка рассеяло наше незнание. Окисление пропана во многом подобно окислению этана, хотя такие явления, как холодные пламена, двухстадийное "воспламенение и отрицательные значения температурного коэффициента, характерны только для пропана и более высокомолекулярных парафиновых углеводородов.  [c.330]

    Производство нефтяных битумов осуществляют разными способами продувкой гудронов воздухом, перегонкой мазутов с глубоким отбором дистиллятов, деасфальтизацией гудронов пропаном. Широко применяют также компаундирование продуктов различных процессов. Основным процессом производства битумов в нашей стране является окисление — продувка гудронов воздухом. Окисленные битумы получают в аппаратах периодического и непрерывного действия, причем доля битумов, полученных в аппаратах непрерывного действия, — более экономичных и простых в обслуживании — постоянно увеличивается. Среди аппаратов непрерывного действия наиболее эффективными являются пустотелые колонны с разделенными секциями реакции и сепарации прореагировавших фаз. [c.6]

    Пропан, бутан, н- и изопентан, выделенные из природных газов и газов стабилизации бензинов, могут быть использованы в нефтехимической промышленности для получения пропилена и бутиленов, а также спиртов, альдегидов и кислот (при окислении) с тем же или меньшим числом углеродных атомов. [c.48]

    Карбонильные группы, за некоторым исключением, имеют склонность увеличивать способность первоначального углеводорода к окислению. В то время как ацетон окисляется более медленно, чем пропан (но быстрее этана), 3-пентанон окисляется несколько быстрее, чем пентан. [c.72]

    Сырьем для процесса прямого окисления служит чистый пропилен или его смесь с пропаном. Окисление ведут кислородом или воздухом с добавкой разбавителя — водяного пара. Для получения 1 кг акролеина требуется 1,4 кг кислорода. Преимущества применения кислорода состоят в сокращении объема рециркулирующего газа [c.171]

    Влияние давления на состав (в % от прореагировавшего пропана) продуктов окисления пропана воздухом (пропан воздух = 1 3,6) [c.434]

    Как показали наши дальнейшие исследования совместно-с Н. И Черножуковым, окисленный петролатум действует на кристаллическую структуру парафинистых продуктов двояко присутствующие в петролатуме неокислившиеся высокомолекулярные, мелкокристаллические твердые углеводороды вызывают измельчение структуры парафинов, находящихся в обрабатываемом парафинистом продукте активным же веществом, обусловливающим дендритную форму процесса кристаллизации, являются продукты окисления, которые представляют собой кислородсодержащие соединения с алкильными цепями. При отделении от окисленного петролатума неокислившихся твердых углеводородов, например, путем экстракции горячим бензином или жидким пропаном, которые очень слабо растворяют продукты окисления, нами получен весьма активный депрессатор, вызывающий дендритную кристаллизацию парафина без предварительного измельчения его структуры. [c.73]


    Отдельные углеводороды и углистые твердые тела затем окисляются порознь. Может случиться, что окисление макромолекулы начнется до ее крекинга. Но это не изменит окончательных результатов. Известно, что окисленные углеводороды расщепляются легче и что присутствие небольших количеств кислорода увеличивает скорость крекинга таких углеводородов, как пропан [51, 52]. Другими словами, предварительное окисление, которое может произойти в пламени горящего углеводорода высокого молекулярного веса, увеличит скорость крекинга. [c.473]

    Продукты нитрования. Обычные газообразные углеводороды (включая н-пентан и изопентан) активно взаимодействуют в паровой фазе с азотной кислотой, в результате чего образуется смесь нитросоедпнений [296—299] (но вопросу о взаимодействии азотной кислоты с жидкими углеводородами см. гл. П.). Основной побочной реакцией при нитровании является окисление. Низшие парафины при высоких температурах образуют только мононитропроизводные, причем реакция идет с замещением водорода в связях С—Н и сопровождается разрывом связей С—С. Так, нанример, при нитровании этана получаются нитроэтан и нитрометан пропан образует нитрометан, нитроэтан, нитропропан-1 и нитропропан-2. Нитрование пропана на практике ведется 75 %-ной азотной кислотой при температуре 430—450° С. [c.584]

    Основным способом производства нефтяных битумов является окисление тяжелых остатков вакуумной перегонки мазута де-асфальтизации гудрона пропаном [57]. В качестве окисляющего агента используют воздух. Процесс осуществляют в реакторах колонного и трубчатого типа, а также в кубах периодического либо непрерывного действия. [c.207]

    Окисление пропана и бутана осуществляется в промышленности все более широко. Так, в США в 1954 г. было окислено около 23 тыс. т пропан-бутана этим методом было получено 25% всего формальдегида и 7% метанола. [c.145]

    На заводах масляного профиля предлагается [120] подвергать глубокому окислению асфальт деасфальтизации пропаном. В процессе окисления содержание асфальтенов возрастает до [c.105]

    Таким образом, с целью увеличения выхода дистиллятных фракций нефти и углубления ее переработки целесообразно использовать больше асфальта деасфальтизации пропаном для производства битумов. Получать битум следует по методу переокисления— разбавления, причем, ступень окисления осуществлять в колонне с отделенной секцией сепарации [44]. [c.115]

    Газофазное окисление пропан-бутановой фракции кислородом с получением метанола, формальдегида и ацетальдегида при наличии в исходной фракции изобутана образуется также ацетон (процесс Меуег а) [53]. [c.37]

    Более широкие экспериментальные исследования по окислению диоксида серь на ванадиевом катализаторе, обезвреживанию отходящих газов от вредных примесей и сжиганию пропан-бутановых смесей на оксидных катализаторах, процессов синтеза аммиака, метанола и других показали эффективность использования способа с реверсом в технологии. На базе этих экспериментов уже внедрен в промышленность способ с реверсом реакционной смеси. Экспериментам предшествовало теоретическое предсказание принципиальной возможности осуществления и эффективности процесса с реверсом для обратимых экзотермических реакций. Численные расчеты по различным вариантам математической модели процесса позволили спланировать работы на опытно-промышленных установках и рассчитать характеристики этих промышленных агрегатов. [c.307]

    Экспериментальное исследование было выполнено на примере реакции окисления бутана на катализаторе хромит меди на оксиде алюминия. Некоторые эксперименты, связанные с определением рабочего диапазона адиабатических разогревов, были проведены на пропан-бутановой смеси. Принципиальная схема установки аналогична приведенной на рис. 6.23. Установка состояла из двух реакторов, каждый из которых представлял собой вертикальную трубу диаметром 0,175 м и высотой 2,8 м. Высота слоя катализатора в каждом из реакторов равнялась 2-2,4 м. Зерна катализатора были изготовлены в виде цилиндров диаметром 2-6 мм, высотой 4-5 мм. Циклические режимы работы реализовывались поочередным переключением соответствующих вентилей, [c.325]

    Пропан. Окислением пропана получают ацетальдегид, формальдегид, уксусную кислоту, ацетон и другие кислородсодержащие продукты. Пропан служит также сырьем для выработки этилена и пропилена. Наряду с этаном и метаном пропан может использоваться для производства ацетилена. При хлорировании пропана получают хлорпроизводные, при нитрировании — нитропропап, нитроэтан и нитрометан. [c.16]

    Фракционировка жидким пропаном окисленного крекин1 -остатка [c.296]

    Другую промышленную устаио вку по окислению газообразных углеводородов построила фирма Силениз кемикал корпорейшн в г. Бишоп (штат Тексас). Процесс ведут при 60 ат, окисляя в присутствии водяного пара чистые пропан или бутан воздухом, взятым в недостатке, по методу, описанному в одном из американских патентов [10]. При этом используют большие избытки углеводорода и разбавителя (водяного пара) и малые продолжительности пребывания газов в зоне реакции. Если смесь из 1 весовой части бутана, 5 весовых частей воздуха и 34 весовых частей водяного пара пропускать при 20—30 ат через реак- [c.436]


    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    Линии I — головной продукт иа абсорбера II — со, СО2, СН4, СоНв, С2Н4, используемые как топливо III — вода /V — пропан обратно на окисление V — вода в дренаж. [c.154]

    Большей частью окислению подвергали не чистый метан, а природный гаэ, содержащий также этан и пропан. Фролих и Вицевич обнаружили, что добавка этана к чистому метану сильно повышает выход метанола, а именно почти в 2 раза по сравнению с тем количеством, которое получилось бы, если бы весь метан превратился в метанол [2]. Метан со значительными количествами этана можно с успехом окислять уже при 300—400° и 130—135 ат, в то время как для окисления чистого метана требуется при прочих равных условиях температура 520°. Благоприятно действует добавка малых количеств окислов азота в качестве переносчиков кислорода. Бибб и Лукас [3] окисляли метан с 7% этана при 700—750° без давления в присутствии небольших количеств двуокиси азота и получили смесь метанола и формальдегида в отношении 8 1. [c.433]

    Пропан окисляется легче этана. Влияние давления на процессы окисления этана, пропана и бутана обсуждались Пьюиттом [4]. [c.433]

    Эффективными промоторами окисления акролеина кислородом являются триалкил- или триарилфосфаты. В присутствии стеарата N1 и трибутилфосфата акролеин окисляется в акриловую кислоту в бензоле при 65 °С и 6 кгс/см с конверсией 28% и селективностью 87,5% [125]. Промоторами при окислении акролеина кислородом в жидкой фазе, могут быть и ароматические нитросоединения, например, возможно окисление при 50 °С и 5 кгс/см в гексане в присутствии нитробензола [126, 127]. При 75 °С смесь пропан — пропилен окисляется с образованием окиси пропилена или акриловой кислоты [128]. Предложен целый ряд катализаторов для окисления акролеина в бензоле молибдат Сн (при 50 °С и давлении кислорода 10 кгс/см получают 67% акриловой кислоты) молибдат Т1 (62%), молибдат Со (64%), смесь молибдатов [129], иод [130]. Возможно окисление под давлением и без добавки катализатора (при 25—30 °С и давлешш кислорода 5 кгс/см конверсия 32%) [131]. [c.157]

    Аналогичный метод описан в американском патенте [69]. Пропилен и смесь пропилена с пропаном окисляли при 340 °С (затем температура повышалась до 450—510 °С) получали 8—11,5 мол. % окиси пропилена наряду с пропионовым альдегидом, акролеином и гидроксиацетоном. В качестве разбавителя предложено исполь- зовать для окисления водяной пар [70], что дает при 215—260 19,7% смеси окиси пропилена и пропиленгликоля. Радиационное облучение повышает выход спиртов, альдегидов и окиси пропилена при окислении пропилена воздухом [71]. Окись пропилена наряду с другими продуктами получается также и при окислении пропана [72]. На фирме I I (Англия) работает опытная установка по прямому окислению пропилена [73]. [c.82]

    Окисление пропилена в присутствии СиО на Si — реакция первого порядка по отношению к кислороду и нулевого порядка по отношению к пропилену [69], поэтому скорость окисления возрастает с увеличением концентрации кислорода [64]. Селективность образования акролеина повышается с ростом концентрации пропилена [64—66]. Водяной пар является лучшим разбавителем по сравнению с пропаном или азотом (при конверсии 6% оптимальный выход 70%) [70—71]. Образование СОа уменьшается при введении водяного пара. Тем самым повышается и селективность оптимальная концентрация пропилена будет 10% [72]. Лучше всего действует добавка 40% водяного пара (при 340—400 °С), выше этого цоказателя катализатор становится нестойким [73]. [c.97]

    В США фирма elanese orp. производит ацетон наряду с другими кислородсодержащими соединениями путем окисления смеси бутан — пропан небольшим количеством чистого кислорода при 330—370 С и 7—10 кгс/см . На долю ацетона приходится 5—7% общего количества оксидата [7]. Более высокий выход получают при использовании изобутана. [c.141]

    Последние наблюдения были сделаны над этаном и пропаном и касались главным образом зависимостей между диаметром сосуда и давлением, причем были обнаружены те же закономерности, что и для метана Как и в случае метана, было отмечено существование критического диаметра сосуда, ниже которого реакция прекращалась. Точно так же можнО предположить, что период представляет собой неразветвленные реакции цепные, инициируемые окислением формальдегида и, возможно, других альдегйдов. Альдегиды, особенно формальдегид, всегда образуются в период Тц и этим оба периода связаны между собой, так же как и остатками перекисей. В условиях, применявшихся Норришем и Ри, когда разветвленные реакции, характерные для периода т , в значительной мере подавлены, можно как будто ожидать развития реакции до стационар- [c.252]

    Имеется ряд сообщений о влиянии добавок на периоды и г . По-видимому, особо важную роль играют добавки соединений, образующихся в качестве промежуточных продуктов реакции, таких как формальдегид и ацетальдегид. Изучение смесей пентан-кислород и гексан-кислород при температурах несколько выше 200° С показало, что добавление умеренных количеств формальдегида оказывает сильнейшее ингибирующее действие [8], Точно так н<е при изучении смесей пропан-кислород было обнаружено увеличение индукционного периода в присутствии формальдегида [15]. В противоположность этому наблюдения над влиянием ацетальдегида на смесь ЮдН а + 20а при температуре 329° С и давлении 200 мм рт. ст, (по-видимому, в период т ) показали, что индукционный период после добавления ацетальдегида уменьшается. Однако следует отметить, что в указанных опытах индукционный период не уменьшался до нуля даже при добавлении 5% ацетальдегида, хотя по данным экспериментаторов [1] это соответствовало приблизительно концентрации ацетальдегида к концу индукционного периода в тех случаях, когда ацетальдегид вообще пе добавлялся к смеси. Поэтому Айвазов и Нейман пришли к заключению, что один ацетальдегид не может бы1Ь причиной мгновенного образования холодного пламени, и предположили, что перекиси, обнаруженные ими в сравнимых количествах, также должны играть известную роль в механизме возникновения холодного пламени. По-видимому, это предположение справедливо, однако возникает вопрос, идентичны ли перекиси, выделяемые из реакционной смеси, тем активным перекисям, которые обусловливают реакцию разветвления цепи в период т . Вероятно, следует различать, по крайней мере, два процесса образования перекисей. Одним из них является окисление формальдегида с образова- [c.256]

    Если подвергаемое окислению соединение содержит только вторичные и первичные углерод-водородпые связи, то основным продуктом реакции является кетон. Так, пропан может быть превращен в ацетон с выходом последнего 75% при употреблении смеси пропана, кислорода и бромистого водорода в отношении 2 2 1. Конверсии подвергаются примерно 75% от первых двух компонентов, причем регенерируется около 83% катализатора. Температура процесса несколько выше температуры, необходимой для окисления изобутана (190° вместо 160° С в последнем случае), и максимальный расход катализатора также больше. В таких условиях около 8% пропана превращается в пронионовую кислоту. Между механизмом образования кетона и приведенным выше механизмом окисления углеводородов с разветвленной цепью можно провести четкую параллель  [c.275]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Арланская нефть интересна не как массовая товарная йефть, а как представитель группы высокосернистых высоко-емолпстых нефтей. Для битумов, полученных из 52—55%-го Гудрона этой нефти путем вакуумной перегонки, окисления воздухом и деасфальтизации пропаном, а также компаундирования гудрона с асфальтом, полученным деасфальтизацией гудрона бензином, на рис. 46 показан групповой состав, на рнс. 47— свойства [47, 119]. [c.86]

    Описанные изменения состава и свойств битумов, полученных по разной технологии, иллюстрируются также данными табл. 19, из которых видно, что вакуумная перегонка, деасфальтизация пропаном и компаундирование переокисленного асфальта с остаточным экстрактом приводит к получению битумов, в масляной части которых содержание парафино-нафтеновых углеводородов меньше, чем у окисленных битумов. [c.107]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    Койман [116] сообщает о получении перекисей окислением этана и пропана кислородом. Окисляя смесь из 90% этана и 10% кислорода при времени контакта 8 сек. и температуре 450°, получили максимальный выход перекиси, равный 1,54% в расчете на этан. Для увеличения выхода перекиси рекомендуется добавлять вместе с кислородом небольшое количество ацетальдегида. В процессе окисления пропана при отношении пропан кислород от 5,6 до 12,3 и температуре 350—475° выход перекиси составил [c.88]

    Парофазныо процессы окисления осуществлены на заводах фирм Селаниз корпорейшн оф Америка , Уоррен петролеум корпорейшн , Ситиз сервис и др. Жидкофазный процесс используется фирмой Селаниз на заводе в Пампа (штат Тексас, США) для получения уксусной кислоты. Сырьем для парофазного и жидкофазного процессов окисления являются пропан и бутан. [c.89]

    Экстракция применяется при рафинировании древесной смолы [309], которая содержит 80—90% абиетиновой кислоты и ее изомеров с общей формулой С19Н29СООН, некоторое количество высших ароматических углеводородов и окисленных смол. Рафинирование смол производится фурфуролом, причем сырая смола растворяется в газолине до концентрации 15%. В качестве экстракционного аппарата пользуются колонной с перфорированными тарелками. (Например, размеры одной из работающих колонн следующие диаметр 1000 мм, высота 13 м, расстояние между тарелками 200 мм). Рафинат освобождается от газолина перегонкой с водяным паром. Рафинированные смолы светлого цвета, их свойства зависят от степени экстракции. Экстракт после удаления фурфурола применяется при производстве искусственных материалов в качестве эмульгатора. Запатентовано также рафинирование пропаном 1326]. [c.421]


Смотреть страницы где упоминается термин Пропан окисление: [c.123]    [c.110]    [c.335]    [c.90]    [c.86]    [c.87]    [c.87]    [c.88]    [c.89]    [c.90]    [c.100]    [c.356]   
Общая химическая технология органических веществ (1966) -- [ c.230 ]

Основные начала органической химии том 1 (1963) -- [ c.167 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.586 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.168 ]

Общая химическая технология органических веществ (1955) -- [ c.202 ]

Технология нефтехимического синтеза Часть 1 (1973) -- [ c.223 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.158 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.431 , c.446 ]

Основы технологии нефтехимического синтеза Издание 2 (1982) -- [ c.110 ]

Общая химическая технология Том 2 (1959) -- [ c.368 , c.447 ]

Технология нефтехимических производств (1968) -- [ c.136 , c.137 , c.144 , c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Боросиликатное стекло для реакторов для окисления пропана

Глубокое полное окисление пропана

Горение углеводородов окисление пропана

Гудков, В. П. Федулова. Окисление метано-пропановых смесей кислородом воздуха в присутствии окислов азота

Гудков. Изучение процесса неполного окисления метана и пропана по методу холодно-горячей трубки

Гудков. Неполное окисление этана и пропана в электрических разрядах

Кинетика и механизм окисления пропилена и пропана

Механизм окисления пропана

Нафталин, бактериальное окисление этан-пропановых смесе

Окисление бутана, пропана, этана

Окисление пропан-бутановых смесей

Окисление пропана и бутанов

Получение уксусной кислоты при окислении пропана, бутана и гомологов С5.ЛЗ

Пропан

Пропан окисление и след

Пропан окисление. в спирты

Пропан-бутановые смеси, окислени

Пропанои

Пропилен, влияние на окисление пропан

Разделение окисления пропана



© 2025 chem21.info Реклама на сайте