Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные карбонильных соединениях

    Другой характерной особенностью карбонильных соединений является высокая реакционная способность а-водородных атомов, которые шод действием щелочных агентов могут отщепляться в виде протонов. Это обусловлено тем, что наиболее электроотрицательный атом кислорода карбонильной группы вызывает не только появление большого дефицита электронной плотности на непосредственно связанном с ним атоме углерода, но и передаваемый по индукции общий сдвиг электронов остальных связей и в первую очередь ближайших связей С—Н, находящихся в а-положении к карбонильной группе. [c.184]


    Для образования ненасыщенных полимерных соединений из альдегидов и кетонов необходимо присутствие в молекуле оксосоединения группы —СНг—СО—. Карбонильные соединения, содержащие только один а-водородный атом, под дейст  [c.130]

    Карбонильные соединения, не имеющие а-водородных атомов, такие, как формальдегид и бензальдегид, в эту реакцию не вступают. [c.677]

    Наряду с уже рассмотренными нуклеофильными реагентами, имеются и другие вещества, которые способны присоединяться к карбонильной группе. Эти вещества обладают С—Н-кислотностью к ним относятся альдегиды, кетоны, кислоты, сложные эфиры, нитрилы и нитросоединения, имеющие в а-положении к функциональной группе водородный атом, а также синильная кислота, ацетилен. Эти соединения сами по себе не обладают основными свойствами, однако могут в присутствии сильных оснований равновесно переходить в реакционноспособную форму, обладающую достаточной нуклеофильной активностью, чтобы присоединяться к карбонильному соединению. [c.127]

    Если у обычных альдегидов неизвестны енолы в свободном виде, а нитрозосоединения, имеющие а-водородные атомы, устойчивы только в виде оксимов, то у нитросоединений, имеющих а-водородные атомы, можно выделить как ациформу (енол), так и нитроформу, аналогичную кетоформе карбонильных соединений. (Ознакомьтесь по учебнику с таутомерией алифатических нитросоединений ) [c.221]

    ГИДРАТАЦИЯ. Большинство карбонильных соединений, содержащих меньше шести атомов углерода, растворяется до некоторой степени в воде. Это вызвано в основном образованием водородных связей между карбонильным атомом кислорода и водородными атомами воды. Ацетон, например, смешивается с водой в любых отношениях. [c.15]

    Спектры всех типов карбонильных соединений характеризуются интенсивным поглощением (8 = 300—2000) в области 1900—1580 см , обусловленным характеристическими колебаниями с участием группы С = 0. Это поглощение хорошо изучено и показано, что на положение и интенсивность полос поглощения С = 0 влияет в первую очередь структура молекулы (геометрия молекулы, масса атомов, связанных с карбонильной группой, индукционные и мезомерные эффекты, стерические факторы). Кроме того, на частоту колебаний связи С = 0 влияет агрегатное состояние вещества и растворитель (образование водородных связей или электростатическое взаимодействие). Смещения, происходящие при этом, обычно меньше сдвигов, вызываемых влиянием структурных факторов. [c.36]

    Фотолиз карбонильных соединений с последующим превращением образовавшихся свободных радикалов [декарбонилированием (тип 1) или водородным [c.379]

    Резонанс подобного типа невозможен для карбанионов, образующихся при ионизации р-, у-водородных атомов и т. д. в насыщенных карбонильных соединениях. [c.810]


    С —О , обладающей намного меньшим или даже противоположно направленным дипольным моментом. Действительно, показано, что дипольный момент [1е(п- п ) низшего синглетного возбужденного состояния п- п бензофенона, равный Кл-м (1,5 Д), вдвое меньше дипольного момента основного состояния ((Ая= 10-10 ° Кл-м или 3 Д) [32, 33, 96]. При переходе к более полярным средам такое уменьшение дипольного момента должно сопровождаться гипсохромным сдвигом полосы поглощения, соответствующей переходу л->л (отрицательным сольватохромным эффектом). Кроме того, протонные растворители способны образовывать водородные связи с неподеленной электронной парой атома кислорода, в результате чего энергия л-состояния снижается еще больше, тогда как энергия л -состояния в первом приближении не меняется. Таким образом, наблюдаемый экспериментально при повышении полярности растворителя гипсохромный сдвиг полосы поглощения карбонильных соединений, отвечающей переходу можно объяснить как кооперативный эффект, обусловленный воздействием на молекулы растворенного вещества электростатических сил и водородных связей [97—106]. Этот хорошо известный гипсохромный сдвиг можно приписать также индуцируемой полярным растворителем более эффективной общей и специфической сольватации основного состояния и (или) менее эффективной сольватации менее биполярного возбужденного состояния п- п. Представленные на рис. 6.5 данные убедительно показывают, что основной причиной на- [c.431]

    Методом ЯМР изучали также влияние растворителей на биполярность связи X—О (Х = С, N, Р, S), особенно в карбонильных соединениях, например алифатических кетонах и сложных эфирах [251—254, 367, 397, 398]. Как показано ниже на примере ацетона, химические сдвиги и О карбонильной группы очень чувствительны к природе растворителей, особенно протонных, способных образовывать водородные связи с карбонильным атомом кислорода [251, 253, 367, 397]. [c.469]

    Аддукты литийорганических соединений с изоцианидами образуются с высокими выходами в том случае, если изоцианид не имеет способных к металлированию а-водородных атомов [1]. Аддукты этого типа способны реагировать с различными электрофилами последующий гидролиз возникающих при этом иминов приводит к карбонильным соединениям. Общим итогом рассматриваемого процесса является, таким образом, нуклеофильное ацили-рование электрофильных реагентов (схема 20) [27]. [c.20]

    За исключением газообразного формальдегида, низшие альдегиды и кетоны представляют собой подвижные жидкости. Их летучесть падает с увеличением молекулярной массы. Температуры кипения альдегидов и кетонов (табл. 2.2.6 и 2.2.7) ниже температур кипения соответствующих им спиртов, так как карбонильные соединения сами по себе не образуют водородных связей. Правда, их температуры кипения выше таковых для углеводородов со сходной молекулярной массой, поскольку между молекулами альдегидов и кетонов существует диполь-дипольное взаимодействие. Дипольный момент карбонильной группы равен 2,7 О. [c.343]

    Такая водородная связь не осуществима ни в кето-форме ди-карбонильного соединения, ни в монокарбонильных соединениях. Об эффективности процесса перехода кетон-енол енолизации) можно судить по соотношению обоих таутомеров в различных карбонильных соединениях. [c.8]

    Физические свойства. Карбонильные соединения не образуют водородных связей, поэтому их температуры кипения значительно ниже, чем соответствующих спиртов. Низшие альдегиды и кетоны — легкокипящие жидкости (формальдегид — газ) с резким запахом, хорошо растворимы в воде. [c.341]

    При реакции между двумя неодинаковыми карбонильными соединениями каждое из них может играть роль как метиленовой, так и карбонильной компоненты, вследствие чего возможно обра-зова1ше смеси продуктов. Предпочтительное направление реакцни определяется подвижностью водородных атомов в а-метиленовой группе и способностью карбонильной группы к присоединению. [c.573]

    На первой стадии (в большинстве случаев лимитирующей скорость всего процесса) катализатор отщепляет от метиленового компонента протон [см. уравнение (3.1)]. При этом образуется стабилизированный сопряжением мезомерный анион (1), обладающий меньшей энергией, чем ион -ОН. Отщепление протона происходит тем легче, чем более активирован а-водородный атом (например, -хлорпропионовый альдегид реагирует быстрее, чем пропионовый), а также чем длиннее цепь, по которой рассредоточивается неподеленная пара электроцов, остающаяся в анионе после отщепления протона (например, в случае а, -непредельных карбонильных соединений или р-дикарбониль-ных соединений). [c.188]

    Альдольно-кротоновая конденсация. В альдольно-кротоновой конденсации карбонильными компонентами могут быть любые альдегиды и кетоны, а метиленовыми — альдегиды и кетоны, имеющие хотя бы один а-водородный атом. Таким образом, метиленовыми компонентами обычно не могут быть такие карбонильные соединения, как формальдегид, бензальдегид или триметилуксусный (пивалиновый) альдегид. [c.198]


    Наличие внутримолекулярной водородной связи и хелатной структуры подтверждается еще и тем, что температура кипения енольной формы ацетоуксусного эфира ниже, чем кетонной. Обычно спирты, молекулы которых образуют межмолеку-лярные водородные связи, имеют температуры кипения несколько выше, чем карбонильные соединения с таким же числом атомов углерода. Например, температура кипения изопропилового спирта на 26 °С выше, чем температура кипения ацетона. [c.237]

    Енолизация кетонов. Когда в молекуле реактива Гриньяра у р-углеродного атома нет ни одного атома водорода, способного к гидридному переходу, а сам радикал достаточно велик, магнийорганическое соединение действует как основание, отщепляя (как при реакциях конденсации) от карбонильного соединения подвижный а-водородный атом. При этом в качестве основного продукта образуется енолят (43), который может реагировать со второй молекулой кетона по типу альдольной конденсации, образуя после гидролиза продукта реакции -гидр-оксикарбонильное соединение  [c.287]

    Побочное образование первичных и третичных спиртов. Казалось бы, что взаимодействие реактивов Гриньяра, у которых радикал не имеет в -положении способных к переходу в виде гидрид-иона атомов водорода, с карбонильными соединениями, не имеющими активированных а-водородных атомов, должно протекать гладко, без образования побочных продуктов. Однако уже при йзаимодейстнии фенилмагнийбромида с избытком [c.289]

    Подвижность а-водородных атомов проявляется также в том, что первичные и вторичные нитросоединенин могут играть роль метиленовой компоненты в реакциях конденсации с карбонильными соединениями, например  [c.222]

    Восстановление карбонильных соединений неблагородными металлами, например (амальгамированным) магнием или алюмини- ем, железом, цинком и др., может приводить как к продуктам реакции, отвечающим схеме (Г, 7.89а), так и к веществам, соответствующим другому направлению этой реакции [схема (Г. 7.896)]. Направление, по которому происходит реакция, зависит от природы карбонильного соединения, а также от условий реакции (металл, растворитель и т. д.). Альдегиды и кетоны восстанавливаются обсуждаемыми металлами в растворителях, содержащих активные водородные атомы (например, в воде, раз- бавленных кислотах и щелочах, спиртах), преимущественно до соответствующих карбинолов азометины в этих условиях восстанавливаются до аминов С помощью амальгам магния или алюминия кетоны в растворителях, не имеющих подвижного водорода (например, в бензоле), превращаются главным образом в гликоли (пинаконы). Напишите схему образования пинакона из ацетона согласно схеме (Г. 7.89 II в данном случае пинаколят магния) и объясните указанную выше зависимость продукта реакции от растворителя,. [c.120]

    Положение максимума п—я -перехода зависит от природы растворителя. Если карбонильное соединение растворено в растворителе, способном к образованию водородных связей (например, в воде), то несвязывающие электроны кислорода карбонильной группы вовлекаются в водородную связь с растворителем. [c.76]

    Поскольку попятие больше энергии эквивалентно понятию более короткая длина световой волны , карбонильные соединения поглощают при более коротких длинах волн в растворителях, образующих водородные связи, чем в растворителях, не образующих водородные связи. Это иллюстрируется данными табл. 18-4. [c.77]

    Для получения оксиранов прежде всего используют эпоксидирование олефинов надкислотами (например,. и-хлорнадбензойной кислотой) [За]. Эпоксидирование может протекать стереоселективно, если надкислота фиксируется водородными мостиками с имеющимися ОН-группами (Г-4). Эпоксидирование по С=С-связи в а,р-ненасыщенных карбонильных соединениях можно осуществить пероксидом водорода в щелочной среде (Г-3). Больщое синтетическое значение имеет энантиоселективное эпоксидирование аллиловых спиртов греш-бутилгидропероксидом в присутствии тетраизопропилата титана и диэтилового эфира (-Ь)- или [c.83]

    При определенных условиях в результате перекрестной альдольной конденсации можно получать хорошие выходы индивидуальных продуктов.- Для этого необходимо, чтобы один из реагентов не содержал а-водородных атомов и поэтому был неспособен давать продукты самоконденсации (например, ароматические альдегиды или формальдегид). Такой реагент смешивают с катализатором и к этой смеси медленно прибавляют карбонильную компоненту, содержащую водород в а-положении. При этом в любой момент времени в среде имеется очень низкая концентрация ионизующегося карбонильного соединения и образующийся из него карбанион реагирует почти исключительно с другим карбонильным соединением, присутствующим в большом избытке. [c.824]

    Наиболее важными донорами электронной пары (т. е. акцепторами водородной связи) являются атомы кислорода в спиртах, простых эфирах и карбонильных соединениях, а также атомы азота в аминах и азотистых гетероциклах. Наиболее важные доноры протонов — гидроксильные, аминные,. карбоксильные и амидные группы. Прочные водородные связи создаются в парах О—Н---0, О—Н---Н и N—Н---0 связи типа Н—Н---Н заметно слабее, а связи С12С—Н---0 и С С—Н---1Ч относятся к наименее прочным. Функции слабых акцепторов водородной связи могут также выполнять я-электронные системы ароматических соединений, алкенов и алкинов. [c.36]

    Изонитрилы, обладающие а-водородными атомами, склонны к депротонированию при действии литийорганических соединений в большей степени, чем к присоединению к изоциа-новой группе. В отсутствие а-водородных атомов, однако, изо-нитрилы обнаруживают реакционную способность, сходную с карбенами, образуя литиомины последующая реакция с электрофилами дает производные имина, которые могут сами по себе являться целью синтеза либо могут быть гидролизованы до соответствующих карбонильных соединений. [c.69]

    Енолизация или а-мегаллироваиие карбонильных соединений, имеющих а-водородные атомы. В ряде случаев, например для 1,3-дикетонов, такой процесс становится единственным [18]. [c.52]

    Реакция Пассерини. Взаимодействие карбоновых кислот с карбонильными соединениями и изонитрилами является общим методом синтеза 0-ацильных производных Л -замещенных амидов а-оксикарбо-нрвых кислот. Считают, что приэтом сначала протекает а-присоединение к изонитрилу связанного водородной связью аддукта карбоновой кислоты с карбонильным соединением, а затем происходит внутримолекулярное переацилирование  [c.426]

    Реакция восстановления идет в значительной степени также при наличии избытка альдегида против теоретически вычисленного. Если стерически затрудненное соединение Гриньяра не имеет водородного атома в р-положении, то восстановление по указанной схеме невозможно. В этом случае наступает енолизация — образование магний-енолята карбонильного соединения (см. ниже). [c.308]

    В качестве второго компонента для конденсации с карбонильными соединениями может служить н-нитробензилхлорид и подобные ему галогенпроиз-водные [82—85]. В этих соединениях кислый характер водородных атомов метильной группы п-нитротолуола еш е более усиливается. Окиси диарилэти-ленов образуются при многих такого рода реакциях галогенпроизводных с ароматическими альдегидами. Так, например, п-нитробензилхлорид дает с /7-нитробензальдегидом окись п.п -динитростильбена (Ь1Х) [82, 84], а с бензилом—кетоноокись ЬХ [87], идентичную с продуктом, который получен при конденсации п-нитробензальдегида с дезоксибензоином и последующем окислении п-нитробензальдезоксибензоина щелочным раствором перекиси водорода  [c.15]

    В случае карбонильных соединений, содержащих -водородные атомы, наблюдается конкурирующая реакция енолизации. Так, например, из Т. и ацетофенона 1-фенилпропин образуется лишь с выходом 16%, а 50% кетона возвращается обратно. Альдегиды превращаются в терминальные ацетилены, например фенилацетальдегид превращается в 3-фенилпропин с выходом 30%. [c.525]

    Рассмотрим теперь, какие превращения будет претерпевать карбонильное соединение при действии на него оснований. Дефицит электронной плотности на карбонильном углероде не только определяет способность карбонильных соединений взаимодействовать с нуклеофила.ми (см. уравнение (1)), но и приводит к появлению протонной подвижности атомов водорода, связанных с углеродом, соседним с карбонильным (так называемые а-водородные атомы). Последняя объясняется как отрицательным индуктивным влиянием карбонильного углерода, сказывающегося в первую очередь на соседних С—Н связях, так и возможностью делокали-зации отрицательного заряда в анионе (III), образующемся при действии основания (В) на карбонильное соединение  [c.144]


Смотреть страницы где упоминается термин Водородные карбонильных соединениях: [c.121]    [c.309]    [c.203]    [c.378]    [c.1502]    [c.223]    [c.811]    [c.896]    [c.94]    [c.677]    [c.64]    [c.15]    [c.16]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.15 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Соединения водородные



© 2025 chem21.info Реклама на сайте