Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ полимерного катализатор

    Если при нейтральных или близких к нейтральным значениях pH имеет место бифункциональный катализ, т. е. взаимодействие между незаряженными имидазольными группами, то для описания взаимодействий между полимерным катализатором и субстратом можно предложить три механизма. [c.297]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]


    Полимерный катализатор фиксирует наиболее благоприятное для катализа положение субстрата вследствие многоточечного взаимодействия субстрата и катализатора. [c.332]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    Полимерные катализаторы являются веществами самых различных типов и выполняют самые различные функции. О некоторых из них будет рассказано подробнее в гл, 3, Общие закономерности катализа низкомолекулярными веществами могут быть распространены и на случай полимерных реагентов, обладающих каталитическим действием. Важной проблемой является выделение полимерных катализаторов из системы после реакции. [c.58]

    Факторы, влияющие на конформационные свойства полимерного катализатора, — изменение диэлектрической проницаемости среды, добавление постороннего электролита и т. п. — сказываются на эффективности полимерного катализа, тогда как в случае низкомолекулярного катализатора эти внешние факторы не влияют на скорость гидролиза [52, 53]. [c.27]

    Катализ противоионами полиэлектролитов. . .. 966 Системы полимерный катализатор — полимерный [c.478]

    Гетерогенные полимерные катализаторы. . . . . . 970 Катализ на полимерах с системой сопряженных [c.478]

    При действии ферментов на специфические субстраты включаются дополнительные факторы, которые пока не удается эффективно моделировать с помощью синтетических полимеров и которые фермент не может реализовать в полной мере на неспецифических субстратах. Один из таких факторов согласованное участие в катализе двух или нескольких функциональных групп, встроенных в одну активную полость. Описан ряд случаев моделирования двухцентрового катализа с помощью бифункциональных низкомолекулярных соединений . Кооперативные эффекты функциональных групп были продемонстрированы и на некоторых синтетических полимерных катализаторах Один из примеров — сопо- [c.297]


    Обнаруженная полифункциональность активного центра, конечно, еще не может служить доказательством трех- или двухцентрового механизма элементарного акта расщепления и-нитрофенилацетата в активной полости. Не исключено, что каждый из нуклеофилов действует независимо. Однако важно подчеркнуть самою возможность построения синтетической макромолекулы, принимающей конформацию, при которой молекула субстрата продуктивно связывается вблизи трех функциональных групп. Кроме того, сказанное выше позволяет надеяться, что в процессе приготовления полимерного катализатора, вообще говоря, возможна и целенаправленная настройка третичной структуры на модель многоцентрового переходного комплекса в соответствии с сформулированным выше принципом. Следовательно, возможно и осуществление эффективного многоцентрового катализа в активных полостях специально организованных глобул синтетических сополимеров. [c.299]

    Получают распространение процессы трехфазного катализа, когда катализатор иммобилизован на полимерной подложке и обладает рядом преимуществ по сравнению с двухфазным простотой отделения от реакционной массы, легкостью регенерации, высокой активностью, термостабильностью [102]. [c.38]

    Каталитическая активность многих высокомолекулярных соединений хорошо известна. Классическим примером являются ферменты, которые осуществляют катализ в живых организмах при сравнительно низких температурах с исключительной эффективностью и избирательностью. Здесь авторы не излагают теории полимерных катализаторов естественного происхождения, так как им посвящен отдельный, 18-й том серии обзоров издательства Иванами ( Структура и функциональность биохимических соединений ), а ограничиваются описанием лишь синтетических полимеров с каталитической активностью. [c.62]

    Катализаторы полимерные — катализаторы, каталитически активные группы к-рых входят в состав макромолекул. Исследование процессов, катализируемых К. п., в значительной мере стимулируется успехами в области синтеза и модификации полимеров, благодаря к-рым появилась возможность вводить в макромолекулы практически любые функциональные группы и получать макромолекулы с участками различной структуры и регулярности. Проблемы катализа К. п. связаны с необходимостью расширения круга высокоспецифич. катализаторов, обладающих высокой активностью и работающих в мягких условиях. С другой стороны, К. п.— подходящие объекты для моделирования ферментов. Знание химич. состава и конформационного состояния К. п. дает возможность выяснить роль и механизм влияния на каталитич. активность отдаленных групп макромолекулы, входящих в состав активных центров наряду с каталитически активными группами, а также значение и функции координационносвязанного металла и другие вопросы, к-рые на природных соединениях изучать гораздо труднее. [c.478]

    Большинство многотоннажных промышленных химических процессов — получение аммиака, серной и азотной кислот, полимерных материалов, процессы переработки нефти и многие другие протекают в присутствии катализаторов. Многие катализаторы обладают свойством селективного (избирательного) влияния на скорость химической реакции. Они ускоряют одни реакции, не влияя на скорость других. Учение о катализе —важнейший раздел химической кинетики. [c.530]

    Катализатор. В качестве катализатора процесса используется безводный фтористый водород. За счет накопления в катализа-торном слое тяжелых полимерных продуктов и воды концентрация фтористого водорода снижается. Активность катализатора оптимальна, если в нем содержится не более 1,5% воды и не более 12% органических разбавителей. Концентрация фтористого водорода не ниже 87 % поддерживается путем отбора части катализатора на регенерацию. Расход фтористого водорода составляет менее 0,14 кг/м алкилата. [c.172]

    Отравление катализатора может быть обратимым, когда контактные яды снижают активность катализатора временно, пока они находятся в зоне катализа, и необратимым, когда активность катализатора не восстанавливается после удаления контактных ядов из зоны катализа. Контактные яды могут содержаться в реагентах, поступающих на каталитический процесс, а также образовываться в качестве побочных продуктов в самом процессе. Устойчивость к контактным ядам является важнейшим свойством промышленных катализаторов. Для удлинения срока службы контактных масс в химико-технологических процессах предусматривается стадия тщательной очистки реагентов от вредных примесей и операция регенерирования катализатора (например, выжигание высокоуглеродистой полимерной пленки, обволакивающей зерна катализатора, в процессах каталитического крекинга, нефтепродуктов, изомеризации и дегидрирования органических соединений). [c.132]


    Микрогетерогенный катализ занимает промежуточное место между гомогенным и гетерогенным, в котором в качестве катализатора используют больщие полимерные молекулы. Для взаимодействующих на них небольщих молекул они подобны гетерогенным частицам, но образуют с реагентами одну физическую фазу В эту группу входят фер- [c.134]

    В качестве иммобилизованных катализаторов в методе МФК по обыкновению стали использоваться ковалентно связанные с полимерным носителем четвертичные ониевые соли или краун-эфиры. Широкое распространение получили полимерные кислоты и основания. Таким образом, малотоннажный органический синтез остается все тем же кислотно-основным катализом. Но в отличие от его классической формы, характеризующейся почти полным отсутствием направленной активации реагентов, применение межфазного эффекта придает ему принципиально иные качества. Выражаясь языком мультиплетной теории А. А. Баландина, МФК позволяет достигнуть наиболее полного структурного и энергетического соответствия между разрываемыми химическими связями индексных групп реагента и активными центрами катализаторов, что обеспечивает резкое снижение энергии активации реакций и их селективность. [c.247]

    Применение катализаторов, несомненно, положительно с точки зрения проведения поликонденсационных процессов за более короткий срок и в более мягких условиях. Однако в ряде случаев использование катализаторов осложнено тем, что они могут стимулировать нежелательные побочные процессы (образование разнозвенной полимерной цепи [183], преждевременный обрыв цепи и др.), ухудшать свойства конечного полимера в изделиях. Последнее подчас усложняет процесс получения полимера, так как требует привлечения специальных операций для очистки полимера от катализатора. В целом же проблема катализа для многих поликонденсационных процессов в настоящее время очень важна, актуальна и еще требует углубленной разработки. [c.41]

    Ясно, что протонированное имидазольное кольцо (низкое значение а) не участвует в катализе. Очевидно, что полимерный катализатор менее эффективен при а<0,8, ио более эффективен при а>0,8. Однако поскольку рК образования аниона имидазола 14, то невозможно на этом полимере изучать поведение каталитической системы как функцию (полной) диссоциации в гндроксилсодержашей системе. Для этого лучше использовать ноливинилбензимидазол, для которого рЛ 12,2. Скорость гидролиза того же субстрата действительно резко возрастает при щелочных значениях pH. Интересно, что полимер Ы-винилимидазола, который ие может перейти в анионную форму, гораздо менее эффективный катализатор. [c.296]

    Полифункциональный катализ с участием двух функциональных групп в различных ионных состояниях реализуется при гидролизе ,-нитрофенилацетата под действием поли-4 (5)-вини-лимидазола при высоких значениях pH. Реакция имеет первый порядок по полимерному катализатору. Имидазолильные группы могут находиться в трех формах катионной, нейтральной и анионной [схема (12.32)]. Как показано на рис. 12.13, константа [c.333]

    В повторных опытах каташтичесйай активность гидрогелей изменяется и зависит от состава ксяяивкоов в фазе гидрогеля. В некоторых случаях наблюдаются эффекты разработки полимерных катализаторов,- которые, Во-тщишу, связаны с наличием подвижной полимерной матрицы и изменением состава комплексов железа(Ш) и железа(И) в ходе катализа. [c.109]

    Изучение реакций моно- и диизоцианатов со спиртами и гликолями, катализируемых полимерами 4-винилпиридина и его сополимерами со стиролом, показало, что первый порядок скорости реакции по реагирующим веществам, в отличие от процессов на низкомолекулярном аналоге — пиридине, пе выполняется К. п. активней низкомолекулярного катализатора в области малых концентраций реагирующих веществ, причем его каталитич. активность растет пропорционально содержанию стирола в сополимере. Увеличение концентрации реагирующих веществ приводит к запределиванию скорости реакций, катализируемых полимерами. Аналогичная ситуация имеет место в случае ферментативных реакций, протекающих через стадию образования фермент-субстратного комплекса и подчиняющихся кинетике Михаэлиса — Ментен. Предполагается, что макромолекулы в р-ре свернуты в клубки, легко проницаемые для молекул реагирующих веществ. Т. к. объем клубков обычно на несколько порядков превышает объем вступающих в реакцию молекул низкомолекулярных соединений, значительная часть каталитич. актов протекает внутри таких клубков. Последние можно представить как микрофазы с определенной растворяющей способностью по отношению к реагирующим веществам и, следовательно, присущей им концентрацией реагирующих веществ, как правило, отличающейся от концентрации веществ вне полимерных клубков. Более высокая концентрация реагирующих веществ в полимерном клубке, обусловленная большей растворяющей способностью клубка по сравнению с растворителем,— основная причина, по к-рой активность К. п. в области малых концентраций реагируюпщх веществ выше активности низкомолекулярного катализатора. В этой связи становится понятным, почему эффективность К. п. выше в плохих растворителях. Причина аапределивания скорости реакции, наблюдаемого при катализе полимерами, по-видимому, связана с насыщением полимерных клубков реагирующими веществами. Эффект увеличения скорости реакции с повышением содержания стирола в сополимере приписывается специфич. взаимодействию ароматич. ядер стирола, входящего в состав катализатора, и реагентов, в данном случае л, л-взаимодействию. Энергии активации реакций фенилизоцианата с метиловым спиртом, катализируемых низкомолекулярными и полимерными катализаторами, одинаковы, что указывает на идентичность механизмов реакции. [c.479]

    История развития области полимераналогичных реакций включает несколько этапов. Модификация целлюлозы, введение достаточно простых функциональных групп путем реакций замещения в полимерной цепи и полимераналогичных реакций по группам, сохранившимся после полимеризации, обусловили успехи в синтезе ионообменных полимеров и их практическом использовании (катализ путем ионного обмена). Большие успехи достигнуты и при иммобилизации энзимов, применении в качестве носителей гомогенных катализаторов, разработке специальных вариантов синтеза полимеров (например, синтез Мерифилда) и использовании функциональных полимеров для афинной хроматографии. Эти достижения привели к тому, что специфические полимераналогичные превращения на подходящих полимерных матрицах позволили вводить фиксированные на носителе определенные реакционноспособные группы. Полимеры, содержащие связанные с ними функциональные системы, часто называют полимерными реагентами. Необходимость направленного синтеза таких реагентов обусловлена специфическими областями их применения (например, полимерные катализаторы или полимерная фармакология). [c.78]

    Одна из задач молекулярной бионики — это создание полимерных катализаторов разнообразных реакций, которые работают по принципу ферментов и приближаются к ферментам по активности и избирательности действия. Общеизвестно, что ферменты несоизмеримо продуктивнее лучших катализаторов небиологического происхождения, используемых химической промышленностью. Извевтно также, что белки представляют собой весьма сложные молекулярные конструкции, точное воспроизведение которых небиологическими способами — весьма трудная задача. Преодолеть огромный разрыв между синтетическими и биополимерами в обозримые сроки еще недавно казалось практически невозможным. Вместе с тем не нужно доказывать, сколь привлекательна перспектива конструирования искусственных ферментов небелковой природы, настроенных на катализ практически важных реакций. Это позволило бы с колоссальной эффективностью получать промышленно важные продукты в малых реакционных объемах и без существенных энергетических затрат. [c.284]

    Определяющая роль в развитии производства ПЭНД, как и раньше, остается за каталпзаторами. В последние годы ведутся поиски каталитических систем, принципиально отличающихся от известных. К таким системам i относятся, в частности, иммобилизованные на полимерных носителях ( гетерогенизированные каталитические системы) [214]. Представляют существенный интерес однокомпонентные катализаторы, работающие при по-вышенных температурах (до 200 °С), а также бифунк- циональные катализаторы [61]. Исследования в области высокоактивных каталитических систем полимеризации олефинов примыкают к общей проблеме катализа — использованию каталитических систем, близк[1х к биокатализаторам— ферментам [195, 196]. [c.190]

    Рассмотренные выше примеры относились к гомогенным системам, в которых и исходные вещества, и полимерные катализаторы растворяются однородно. Такие системы очень удобны с точки зрения изучения механизмов реакщ й, основных закономерностей катализа полимерными добавками и т. д. Однако при этом всегда возникают сложные практические задачи отделения продуктов реакщ1и и катализаторов. Для целей производства более перспективными представляются нерастворимые полимерные катализаторы. [c.90]

    Примером таких веществ являются ионообменные смолы. Колонки, заполненные сульфированным полистиролом, используются для гидролиза эфиров начиная с 1960 г. При этом ход реакции почти не зависит от скорости протекания реагирующей жидкости, но связан с размерами гранул смолы. Каталитический эффект определяется главным образдм скоростью диффузии внутрь гранул полимера, а не собственно полимерной природой. Для сравнения приведем отношение каталитической эффективности катионообменной смолы и низкомолекулярного катализатора (серной кислоты) для нескольких реакций. Эта величина составляет 0,5 для метилацетата, 0,3 для этилацетата и 0,05 для этил-н-капроата. Известно очень много данных о преимуществах (по сравнению с катализом низкомолекулярными агентами) катализа полимерными добавками в гетерогенных системах реакций этерификации, алкоголиза, конденсации ацеталей, инверсии сахаров и т. д. [c.90]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Ряд авторов описали МФ-катализаторы, фиксированные на полимерных подложках. Такие катализаторы представляют большой интерес для промышленного применения, поскольку их легко отделять после окончания реакции и,. кроме того, можно использовать в непрерывных процессах. Этот метод МФК получил название трехфазный катализ [19, 21, 22]. Реакция замещения с 1-бромоктаном при использовании закрепленной аммониевой соли имеет первый порядок ло субстрату. Если полистирол содержит 1—21% групп — H2NRз+ у фенильных колец, то активность таких смол прямо пропорциональна числу этих групп. Увеличение количества фенильных колец, имеющих группы —СНг—NMeз+, в микропорах полистирола до 46—76% приводит к резкому снижению каталитической активности. Продажные анионообменные смолы обычно мало подходят в качестве МФ-катализаторов [19]. Результаты изучения действия иммобилизованных ониевых солей, краун-эфиров и криптандов [20] показали, что в основном механизм реакций с этими катализаторами сходен с нормальным механизмом МФК-реакций. [c.79]

    С другой стороны, несмотря на весьма близкое сходство полимерных и мицеллярных моделей в простейших случаях, в более сложных полимерных системах уже сейчас обнаружены проявления полифунк-ционального катализа (не известного пока для мицеллярных систем) и предложены катализаторы (в основном для реакций гидролиза), поразительно высокая активность которых не может быть объяснена на основании одних только эффектов микросреды и концентрирования низкомолекулярных реагентов при сорбции их на полимере. Так, Клотц [75, 76] модифицировал, полиэтиленимин (XLVH) имидазольными и додецильными остатками  [c.107]

    Таким образом, варьируя химический состав, изменяя химический потенциал катализатора можно попытаться осуществлять переход от раздельного механизма к высококомпенсационному слитному механизму кроме того, возможно предвидение каталитической активности на основе значений энергии связи реагентов с катализатором [19, с. 495]. Это трудный путь, однако определенные успехи в его реализации имеются, особенно в металлкомплексном гомогенном катализе. В этом случае реагенты входят в координационную сферу иона металла (т. е. становятся дополнительными лигандами), благодаря чему существенно облегчаются их взаимная ориентация, поляризация реагента в поле центрального иона металла и лигандов, электронные переходы в комплексе наконец, такое комплексообразование легко контролировать, варьируя природу исходных лигандов и центрального иона металла. Отметим, что в последнее время возникла и успешно реализуется идея ге-терогенизации катализа металлкомплексными соединениями, закрепленными (иммобилизованными) на полимерных гелях при этом остается возможность перехода к слитному механизму, а также удается использовать в качестве катализаторов соединения, нерастворимые в реакционной среде (основное преимущество классического гетерогенного катализа). [c.99]

    Разработаны и предложены оригинальные схемы роста полимерной цепи в условиях контролируемой радикальной полимеризации виниловых мономеров в условиях металлоорганического катализа. Установлено, что а-метилстирол-хромтрикарбонил позволяет проводить контролируемую радикальную полимеризацию метилметакрилата и некоторых других мономеров в энергетически выгодных режимах, полностью подавляя гель-эффект и целенаправленно регулируя молекулярно-массовые характеристики полимера. Получен гетерогенный катализатор на пенокерамическом носителе ХИПЕК , промотированный продуктами распада ацетилацето-натов Си и Со. [c.17]

    В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационнуюсистему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами н двумя типами поливинилизобутиловогоэфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей. [c.9]

    На схеме 2.1 представлен механизм действия комплексного катализатора - три-хлорида титана с тризтилалюминием при полимеризации алкенов в среде инертного углеводорода в отсутствии кислорода (кислород отравляет катализатор и снижает его активность). Трихлорид титана и триэтилапюминий образуют комплекс (а). При добавлении катализатора в полимеризационную систему молекула мономера СНз=СНХ координируется у атома титана с образованием Л-комплекса и соответственно поляризуется. После разделения зарядов одна из связей в комплексе разрушается, в структуру каталитического комплекса входит молекула мономера и образуется шестичленный цикл (6). Последний регенерируется в четырехчленный цикл (в), в котором атом углерода мономера соединен с атомами титана и алюминия, а исходная этильная группа удаляется из цикла вместе с другим атомам углерода алкена. При добавлении следующих молекул мономера процесс идет аналогично и происходит вытеснение образую-щ йся полимерной матрицы вместе с этильной группой катализатора, находящейся на конце полимерной цепи. Таким образом, при координационной полимеризации обеспечивается строгий стереоспецифический катализ и соответственно регулярное строение полимера. [c.36]


Смотреть страницы где упоминается термин Катализ полимерного катализатор: [c.481]    [c.482]    [c.297]    [c.95]    [c.109]    [c.79]    [c.102]    [c.49]    [c.90]    [c.8]    [c.474]    [c.199]    [c.151]    [c.191]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.331 , c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ Катализаторы

Катализатор полимерный



© 2024 chem21.info Реклама на сайте