Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обессеривание каталитическое

    Продукты. Продукты со сниженным содержанием серы при варианте экстракции меркаптанов и продукты, выдерживающие плумбитную пробу — при превращении меркаптанов в дисульфиды. При применении процесса мерокс (в противоположность процессу обессеривания каталитических бензинов антиокислителем) устраняется проблема сброса отработанных щелочных растворов (содержащих фенолы). Кроме того, вдвое уменьшается расход антиокислителя и обессеренный продукт не требует последующей дополнительной выдержки в продуктовых резервуарах. [c.135]


    Была изучена зависимость обессеривания каталитических газойлей и дизельных топлив от темперагуры и объемной скорости. [c.10]

    Из рис. 1 видно, что максимальная степень обессеривания каталитического газойля для объемных скоростей 0,5 наблюдается при температуре коло 300° С дия объемной скорости 1,0 этот максимум сдвигается к 350°С. [c.205]

    Назначение установки — производство водорода, потребность в котором возрастает из года в год в связи с постоянным углублением процессов переработки нефти, повышением требований к качеству получаемых топлив и смазочных материалов, а также в связи с необходимостью обессеривания энергетического топлива. В качестве сырья для получения водорода методом паровой каталитической конверсии легких углеводородов могут быть использованы природные и заводские (сухие и жирные) газы, а также прямогонные бензины. Этот наиболее распространенный метод производства водорода включает три стадии подготовку сырья к конверсии, собственно конверсию и удаление из продуктов оксидов углерода [5  [c.62]

    Основные этапы этого процесса — подогрев (до 400 °С) и смешение метана и водяного пара обессеривание метана гидрированием на железных катализаторах и поглощение образовавшихся сероводорода и меркаптанов окисью цинка каталитическое разложение смеси водяным паром при 650—700 °С выжигание избытка водорода и смешение с азотом и, наконец, конверсия СО и СО и удаление остатков СО и СОа. Восстановление соединений серы проводят при 400 °С [c.213]

    Цеолиты эффективно очищают от серы не только углеводородные газы, но и жидкие фракции — на газобензиновых заводах, газофракционирующих установках и т. д. Примером широкого применения цеолитов для очистки от серы углеводородов в жидкой фазе может служить очистка пропана. Особенно высокие требования по содержанию серы предъявляются к углеводородам, подвергаемым каталитической переработке, полимеризации и т. п. Применение цеолитов позволяет вдвое снизить содержание сернистых соединений в циклогексане, используемом в качестве растворителя при полимеризации. Не меньшее значение имеет обессеривание и для углеводородов, входящих в состав бензинов. [c.112]

    При испытании целого ряда катализаторов различного состава с целью выбора оптимального содержания гидрирующих компонентов было установлено [69], что максимальная скорость реакции обессеривания достигается при соотношении кобальт молибден равном 0,18. В то же время было показано, что значительное уменьшение содержания гидрирующих компонентов в катализаторе (окиси кобальта -до 1,8-2,7%, окиси молибдена -до 9%) не ухудшает каталитические свойства данного катализатора при гидрооблагораживании средних нефтяных дистиллятов - керосина и дизельного топлива [70]. И, тем не менее, наиболее крупные поставщики катализаторов за рубежом выпускают катализатор АКМ в большинстве случаев с содержанием окиси кобальта на уровне 3 % мае., окиси молибдена 10-15 % [71]. [c.14]


    Выбросы оксида углерода можно уменьшить упорядочением процесса сжигания топлива, а также каталитическим дожиганием СО до диоксида углерода. Уменьшить выбросы диоксида серы можно в результате предварительного обессеривания (де-сульфуризации) сжигаемого топлива. Однако в настоящее время процессы каталитического дожига и десульфуризации топлива еще не доведены до экономически приемлемого уровня, и их практически не применяют. [c.298]

    Для сернистых дизельных топлив из нефтей Востока подбор присадок с большим антикоррозионным эффектом для подавления коррозии мотора продуктами сгорания этих топлив позволит сохранить государству значительные средства, которые потребовались бы для решения поставленной задачи различными методами обессеривания. Для ароматизированных дизельных топлив каталитического крекинга присадка может более оперативно и дешево решить задачу подавления нагарообразования и повышения цетанового числа, вместо того, чтобы подвергнуть это топливо селективной деароматизации. [c.101]

    Некоторые процессы имеют исключительно качественное значение, например различные формы очистки нефтепродуктов, синтез присадок и катализаторов, каталитический крекинг легких дистиллятов, пиролиз нефтяных фракций, ароматизация, обессеривание, окисление, сульфирование нефтепродуктов и т. п., которые, как правило, в конечном итоге снижают глубину отбора товарной продукции. [c.102]

    Сообщается о дальнейшем усовершенствовании процесса ОиИ-НВЗ получения малосернистых котельных топлив и сырья для каталитического крекинга из нефтяных остатков. Из вакуумного остатка кувейтской нефти, содержащей 5,5% серы, получен гидрогенизат с содержанием серы 0,52%. Описываются две модификации процесса при 68 кгс/см идет обессеривание, при более высоком давлении (136—200 кгс/см ) — гидрирование ароматических углеводородов, что особенно благоприятно в случае сырья для каталитического крекинга. Усовершенствования достигнуты за счет улучшения катализатора — увеличения срока службы до 3—4 месяцев и подбора условий. Обессеривание выше 80% нецелесообразно, так как при этом идет сильная деструкция, что повышает расход водорода и удорожает процесс [c.66]

    Можно считать, что решены основные проблемы гидроочистки любых дистиллятных продуктов, хорошо проработаны вопросы сочетания гидроочистки и гидрокрекинга со многими другими процессами нефтепереработки — каталитическим крекингом, риформингом, висбрекингом и другими. В значительной степени решены проблемы селективного гидрирования непредельных и ароматических связей без изомеризации и расщепления, а также проблемы селективного расщепления без насыщения водородом ароматических колец. Близки к разрешению проблемы прямого обессеривания нефти и нефтяных остатков. Продолжают разрабатываться и станут, вероятно, в определенных экономических условиях конкурентоспособными с нефтепереработкой процессы гидрогенизационной переработки различных смол и даже твердых топлив. Но в то же время во многих важнейших направлениях прогресса гидрогенизации остается не мало, а иногда и очень много нерешенных и неясных вопросов, а также возможностей совершенствования. [c.335]

    На рис. 1 приведена принципиальная поточная схема комплексной переработки нефти на современном нефтеперерабатывающем заводе. Предварительно подготовленная и обезвоженная нефть с промыслов дополнительно обессоливается на ЭЛОУ, с комбинированных с прямогонными установками АТ производительностью 6 млн. т нефти в год. По схемам прямого питания в едином комплексе сосредоточены каталитический риформинг для производства высокооктановых бензинов, гидроочистка дизельных топлив, газофракционирующая установка. Наличие в такой схеме процесса гидроизомеризации дизельных топлив позволяет наряду с обессериванием нормальных парафиновых углеводородов проводить их изо- [c.12]

    При использовании в качестве сырья бензинов пиролиза его предварительно подвергают гидростабилизации. Обычным методом подготовки сырья для процессов термического гидродеалкилирования является двухстадийная каталитическая очистка. На первой стадии гидрируют диолефины и стирол, на второй сырье подвергают гидроочистке с целью гидрирования моноолефинов и обессеривания. Поток из второй ступени может направляться на термическое гидродеалкилирование без конденсации продуктов. [c.277]

    Когда гидрообработкой необходимо снизить содержание серы в бензинах, полученных каталитическим крекингом, уменьшается октановое число бензинов вследствие неизбежного гидрирования олефинов. В таких случаях гидрообработку сырья для удаления серы нужно проводить еще до образования олефинов при каталитическом крекинге, и тогда обессеривание бензина будет сопровождаться повышением его октанового числа. [c.104]

    Концентрация сероводорода в газе крекинга на цеолитном катализаторе в 1,2—1,4 раза выше, чем в газе крекинга на аморфных катализаторах (5,0—4,9 против 3,6—3,7 вес. %). Менее сернистыми получаются также бензины и легкие каталитические газойли. Следовательно, реакции обессеривания на цеолитных катализаторах протекают более глубоко. [c.29]


    В результате гидрообессеривания мазута кувейтской нефти при среднем давлении процесса выход легких дистиллятов возрастает с 16 до 24 объемн. % на сырье, а степень обессеривания повышается с 67 до 93%. При этом остаток и дистилляты характеризуются низким содержанием серы [299]. Наиболее важно, что гидро-обессеривание остатков дает возможность получать из них дополнительное количество сырья для каталитического крекинга. Так, при гидрообессеривании 50%-ного мазута кувейтской нефти после [c.193]

    В современной мировой нефтепереработке наиболее акту — а/.ьной и сложной проблемой является облагораживание (деметал — лизация, деасфальтизация и обессеривание) и каталитическая переработка (каталитический крекинг, гидрокрекинг) нефтяных остатков — гудронов и мазутов, потенциальное содержание которых в нефтях большинства месторождений составляет 20 — 55 %. [c.220]

    Рассмотрены основные закономерноста гидрирования и гидро-генолиза гетероатомных соединений, кинетика и катализаторы гадро-обессеривания, деметаллнзацин, гидрокрекинга нефтяных остатков. Описаны оборудование промышленных установок н пртемы зашиты катализатора от загрязнения. Приведены перспективные схемы комплексной переработки нефтяных остатков с использованием каталитического облагорахтаания. [c.2]

    При каталитическом гидрооблагораживании нефтяных остатков наблюдаются два вида термодеструкции — термический крекинг и гидрокрекинг. Интенсивность протекания этих реакций с одной стороны обусловлена термической стабильностью сырья и с другой гидрокрекирующими функциями активных центров катализатора. Большинство опубликованных результатов по изучению реакций гидрокрекинга при обессеривании нефтяных остатков показьшают, что зти реакции идут лишь в начальной стадии процесса, т. е. на свежем катализаторе. Гидрокрекинг в основном обусловлен кислотными центрами [50], которые ввиду высокой концентрации азотсодержащих соединений, асфальтенов и смол быстро дезактивируются и степень Деструктивного разложения сырья на равновесном катализаторе в основном определяется реакциями термического крекинга, -протекающего в объеме. Длительность работы катализатора, в период которого заметны реад<ции гидрокрекинга обычно не превьпиает 100 ч. [c.58]

    Каталитический риформиг бензинов крекинга. Во многих случаях нуждаются в обессеривании, гидрировании и повышении октанового числа бензины, полученные в процессах крекинга. Так как октановое число бензинов крекинга в большой степени зависит от содержания в них олефинов, гидрирование последних приведет к заметному снижению октанового числа. Таким образом, для повышения октанового числа до требуемой величины необходимо прибегать к таким реакциям, как ароматизация, изомеризация и гидрокрекинг. Выше приводятся результаты платформинга смеси 70% дистиллята, полученного при перегонке нефти до кокса месторождения Санта-Мария и 30% бензина прямой гонки из нефти месторождения Лос Анжелос. [c.187]

    Каталитический крекинг сопровождается достаточно полным обессериванием полученного бензина, но это обессеривание часто осуш ествляется ценой быстрого старения катализатора. Синтетические алюмосиликатные катализаторы более устойчивы к сернистым соединениям, чем активированные природные глины устойчивость последних к действию серы может быть повышена. Вследствие глубокого обессеривания бензины сравнительно легко поддаются очистке. Значительная часть серы удаляется в виде тиофенолов (ср. с тиофенами при термическом крекинге) при ш елочной промывке. [c.325]

    Увеличение в общем балансе нефтей доли сернистых и высокосернистых привело к широкому и быстрому развитию гидрогенизаци-онных процессов. Среди них наибольшее распространение получила гидроочистка светлых нефтепродуктов. В меньшем объеме осуществлена гидроочистка сырья каталитического крекинга и гидро-обессеривание остатков с целью получения малосернистого котельного топлива. [c.61]

    Ие исключено, что природные алюмосиликать[ играли большую роль не только в формировании качества уже возникшей в результате какпх о иных подземных процессов углеводородной смеси, го и в первичных процессах образования нефтяных углеводородов из первичного материала. По-видимому, минеральные породы, с которыми пефть соприкасается в подземных условиях, оказывали и оказывают медленное воздействие на состав нефти. Возможно, например, что степень сернистости нефтей зависит исключительно от условий подземного контакта нефтей с минеральными породами и от природы последних. В частности, нефти, залегающие в песчаных пластах, перемежающихся с пластами алюмосиликатных пород, могут быть менее сернистыми за счет медленного каталитического обессеривания их алюмосиликатами в условиях подземного давления и температуры. Наоборот, нефти, залегающие далеко от алюмосиликатных пород, могут быть более сернистыми вне зависимости от возможных микробиологических процессов, протекающих в тех же подземных условиях. С этой точки зрения реализованные в промышленности процессы каталитического крекинга и риформинга, в том числе над алюмосиликатными катализаторами, можно рассматривать как аналогию природных процессов нефтеобразования. [c.68]

    Приведены результаты гидроочистки различных нефтепродуктов легкий крекинг-бензин — содержание серы уменьшается с 0,065 до 0,0013%, бромное число с 56 до 5 г Вгг/ЮО г тяжелый газойль — соответственно с 0,26 до 0,002%, с 75 до 8,4 бензин соответственно с 0,51 до 0,008%, ароматизированный дистиллят с 0,08 до 0,003%, с 28 до 0,5. Расщепление практически не происходит, ароматические углеводороды не затрагиваются, обессеривание протекает несколько быстрее гидрирования олефинов, сохранить которые, однако, не удается При гидроочистке сырой нефти более активен катализатор I содержание серы снижается с 2,08 до 0,17%, тогда как в случае катализатора II — лишь до 0,32% Содержание серы в циркулирующем масле каталитического крекинга уменьшалось от 1,42 до 0,15%. При этом происходило заметное гидрирование ароматических колец (число ароматических атомов на молекулу при нейзменяющемся молекулярном весе 208—209 уменьшается с 11,5 до 8,8, неароматических — возрастает с 3,8 до 6,9), протекающее за счет бициклических ароматических углеводородов. Для полного насыщения ароматических углеводородов необходимо давление 200 кгс/см  [c.48]

    Описан процесс гидроочистки ОиИ-ИВЗ дистиллятных продуктов и остатков. Катализатор регенерируется через 4—24 ч перегретым паром и воздухом. Наряду с обессериванием—частично протекает гидрокрекинг Испытано влияние условий на селективность удаления серы и диолефинов при гидроочистке крекинг-бензинов. Лучший результат — полнота удаления серы 50—60%, полнота удаления диенов — 90% при сохранении 80 —90% моноолефинов. См. также 1 , 1 Описывается процесс В1е5иИогш1п5, разработанный в основном для очистки дизельных топлив. Установки гидроочистки потребляют водород каталитического риформинга. Содержание серы уменьшается в легких [c.52]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    Согласно литературным данным [7, 49, 54], за рубежом среднедистиллятные фракции вторичных процессов (преимущественно каталитического крекинга) добавляют в прямогонное ДТ, направляемое на гидроочистку с целью, прежде всего, обессеривания. В нашей стране в ДТ летней марки вовлекают лишь легкий газойль каталитического крекинга (ЛГКК), который также подвергают совместно с прямогонным дистиллятом гидроочистке. Содержание ЛГКК в топливе в настоящее время составляет 5% и только на некоторых НПЗ достигает 20% [10]. [c.27]

    Так, переработку нефтей малосернистых высокопарафини-стых (мангышлакской) и высокосернистых парафинистых (ар-ланской) осуществляют по топливному варианту с одновременным получением фракций бензина, керосина, дизельного топлива, вакуумного газойля и гудрона. При этом керосиновую фракцию из малосернистон парафинистой нефти используют как растворитель (уайт-спирпт) дизельное топливо и вакуумный газойль подвергают депарафинизации для получения соответственно жидких и твердых парафинов из гудрона получают сернистый электродный кокс. Фракции из высокосернистых нефтей — керосиновую, дизельную, вакуумный газойль — подвергают гидро-обессериванию для получения соответственно товарных реактивного и дизельного топлив, сырья каталитического крекинга. Гудрон используют в производстве остаточных и окисленных битумов, подвергают висбрекингу для получения котельного топлива. [c.70]

    В последние годы за рубежом и в нашей стране с целью расширения ресурсов сырья для каталитического крекинга или гидрокрекинга проводились исследования по разработке новых процессов деасфальтизации и деметаллизации тяжелых нефтяных остатков. Для этой цели наибольшее применеие получили процессы сольвентной де-а фальтизации ТНО с помощью различных растворителей пропана, бутана, пентана и легкого бензина. Большинство из них основано на технологии подобной пропановой деасфальтизации, применяемой в производстве смазочных масел. В этих процессах наряду с деасфальти-зацией и обессмоливанием достигаются одновременно деметаллизация, а также частичное обессеривание и деазотирование ТНО, что существенно облегчает последующую их каталитическую переработку. Как более совершенные и рентабельные можно отметить процессы РОЗЕ (фирма Керр-Макти ) и Демекс (фирма ЮОП ), проводимые при сверхкритической температуре, что значительно снижает их энергоемкость, а также процесс Добен, разработанный БашНИИ НП, в котором использование в качестве растворителя легкой бензиновой фракции позволяет снизить кратность растворитель ТНО, уменьшить размеры аппаратов, потребление энергии, и, следовательно, капитальные и эксплуатационные затраты. [c.122]

    Гидроочистка вакуумного газойля с к.к. до 500 С - сырья каталитического крекинга не представляет дополнительных трудностей и проводится в условиях и на оборудовании, аналогичных для гидрообессеричания средних дистиллятов. При давлении 4-5 МПа, температуре 36Э-400 °С и объемной скорости подачи сырья 1,0-1,5 ч 1 достигается 90%-я степень обессеривания, содержание азота снижается на 20-35, металлов - на 80, ароматических углеводородов - на 10%, коксуемость - на 70%. [c.185]

    Катализаторы третьей группы употребляют главнь ч образом для совмещенных процессов гидрирсваяия и обессеривания углеводородного сырья, содераищего потенциальные каталитические яды. Из таких серостойких катализаторов следует отметить сульфиды вольфрама и никеля, сульфиды вольфрама, молибдена и никеля, сульфиды вольфрама, сульфиды никеля и молибдена, окиси кобальта и молибдена, окиси никеля и молибдена и дисульфид молибдена. [c.236]

    На Т ступени сырье очищают от сернистых, азотистых и других каталитических ядов на катализаторе WS2 1-N s- AЧOз при 5 Ша. 300°С и 0,5 Ь этих условиях происходит глубокое обессеривание сырья -до 0,00038 (масс.), ароматических углеводородов гидрируется 52,8% (масс.), а содержание н-алканов снижается всего на 0,2 (масс.). Выход готового продукта 99 в расчете на исходное сырье. [c.252]


Смотреть страницы где упоминается термин Обессеривание каталитическое: [c.177]    [c.72]    [c.237]    [c.55]    [c.100]    [c.347]    [c.120]    [c.121]    [c.122]    [c.361]    [c.177]   
Общая химическая технология топлива Издание 2 (1947) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Использование каталитического крекинга для получения олефинов и обессеривания нефтепродуктов

Каталитическое обессеривание в органической химии Каталитическое обессеривание бензина (таблица

Каталитическое обессеривание газов (очистка газовых смесей) (таблица

Каталитическое обессеривание газов и жидкостей (удаление сероводорода) (таблица

Каталитическое обессеривание масел (таблица

Каталитическое обессеривание органических веществ (удаление тиофена) (таблица

Каталитическое обессеривание углеводородов (таблица

как топливо, требования к нему каталитическое обессеривание



© 2024 chem21.info Реклама на сайте