Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила ионная раствора электродвижущая

    Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы (э. д. с.) гальванической цепи (см. ниже) и др. [c.395]


    Водородный показатель pH экспериментально определяется различными методами, которые можно подразделить на потенциометрические и колориметрические. Потенциометрические методы основаны на измерении э. д. с. гальванического элемента, одной из электродных жидкостей которого является исследуемый раствор. Электродвижущая сила такого элемента функционально связана с концентрацией ионов Н+ в исследуемом растворе уравнением Нернста ( 79), по которому и вычисляется pH раствора. [c.486]

    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]

    Для измерения относительного электродного потенциала какого-либо металла составляют гальванический элемент из стандартного водородного электроде и нз исследуемого металлического электрода, погруженного в раствор, содержащий 1 моль/л ионов данного металла измеряют электродвижущую силу составленного элемента и, взяв полученное значение ее с обратным знаком, вычисляют электродный потенциал металла (если исследуемый металл является в составленном элементе анодом). Установка для определения электродных потенциалов металлов с помощью водородного электрода показана на рис. 29. Для внешней цепи водородный электрод будет положительным полюсом, если в паре с ним находится электрод из активного металла, и отрицательным, если в паре с ним находится электрод из неактивного (благородного) металла. [c.205]

    Проведем теперь эту же реакцию в гальваническом элементе (рис. 23, б). Для этого погрузим пластинку цинка (один электрод) в раствор сульфата цинка, а пластинку меди (другой электрод) — в раствор сульфата меди. Если соединить оба полуэлемента н-образной трубкой, заполненной токопроводящим раствором, то мы создадим гальванический элемент —источник электродвижущей силы (э. д. с.). Это элемент Даниэля — Якоби. В первом полу-элементе будет происходить растворение цинка с превращением его атомов в ионы, т. е. процесс 2п (к) = 2п2+(р) + 2в- [c.60]


    Для элемента, состоящего из двух электродов с растворами ионов одинаковой валентности, величина электродвижущей силы в зависимости от концентрации электролитов по аналогии с (16) выражается формулой [c.255]

    При концентрации ионов Н и С1" в растворе, равной I г-ион л кг-ион м ), электродвижущая сила этого элемента, направленная противоположно приложенной поляризующей э.д.с. (э.д.с. поляризации), будет равна разности нормальных электродных потенциалов водородного (0,00 в) и хлорного электродов (1,36 в) и составит, следовательно, 1,36 в. [c.275]

    Общая ионная сила каждого раствора равна т, однако некоторая доля этой величины (х) обусловлена присутствием ионов хлора в левом растворе и ионов серебра в правом растворе. Электродвижущая сила элемента опре-де.тяется уравнением [c.307]

    Потенциометрический анализ — это один из электрохимических методов анализа, основанный на измерении потенциала электрода, погруженного в анализируемый раствор, или, иначе говоря, на определении концентрации иона по электродвижущей силе (ЭДС) гальванического элемента. [c.398]

    Измерение э. д. с. этой же пары металлов в обычной цепи осложняется тем, что величина электродвижущей силы будет зависеть также и от концентрации ионов металла в растворе. Электродвижущая сила будет обусловлена, кроме контактных потенциалов, переходом ионов из металла в раствор или обратно, т. е. теми явлениями, которые рассматривает теория Нернста. Это вызывает дополнительные скачки потенциалов. [c.384]

    I металла можно воспользоваться гальваническим элемен- том — системой из двух электродов, одним из которых служит нормальный водородный электрод, а другим — электрод испытуемого металла, погруженный в раствор его соли с активностью катиона 1 г-ион/л. Электродвижущая сила такого гальванического элемента характеризует окисли- тельно-восстановительную способность металла относи-, тельно стандартного водородного электрода и представляет собой, таким образом, его стандартный потенциал. [c.182]

    Так как из величины электродвижущей силы элемента II можно вычислить с помощью уравнений (76) и (77) приближенное значение гпн в растворе слабой кислоты НА, то можно подобрать концентрации электролитов в элементе III таким образом, чтобы ионная сила обоих растворов была равна т. При соединении этих элементов получается цепь [c.306]

    В тех случаях, когда растворенное вещество нелетучее, коэффициент активности рассчитывается в принципе так же, но измеряется другое свойство раствора, например, понижение температуры замерзания. При определении -ионов измеряется электродвижущая сила гальванических элементов. [c.446]

    Как отмечалось, сильные электролиты не подчиняются закону разбавления Оствальда. Степени диссоциации сильных электролитов, вычисленные из данных криоскопии, электропроводности и электродвижущих сил, заметно расходятся между собой даже в относительно разведенных растворах. Рентгенографическое изучение показало, что электролиты в твердом кристаллическом состоянии имеют ионную решетку. При растворении благодаря высокой диэлектрической постоянной воды и других растворителей с полярными молекулами электростатические силы между ионами уменьшаются. Этому же способствует и большая энергия гидратации (сольватации) ионов. Сильные электролиты практически полностью диссоциированы на ионы. Наблюдавшееся на опыте отклонение свойств растворов сильных электролитов от идеальных вызвано действием электрических межионных сил в растворе. [c.95]

    Одна из важнейших характеристик гальванического элемента -его электродвижущая сила А = ок - 1/оа. где оа потенциалы катода и анода. Например, для элемента, составленного из медного и ци кового электродов, погруженных в нормальные растворы собственных ионов, пользуясь электрохимическим рядом напряжений (см. табл. 3.1), определим Д = 1/си Щ.п +0,337 - (-0,763) = 1,1 В. Полученное значение совпадает с измеренным для соответствующего гальванического элемента. [c.36]

    При исследовании влияния растворителей на свойства электролитов — на их растворимость, силу, кислотность, а также на электродвижущие силы — широко использовался метод единых нулевых коэффициентов активности уо-Эти коэффициенты, в отличие от обычных, отнесены к состоянию ионов или молекул в бесконечно разбавленном водном растворе и определяются работой переноса ионов или молекул из бесконечно разбавленного неводного раствора в воду. [c.6]

    Константы диссоциации электролитов в растворе определяются на основании данных об электропроводности, измерения электродвижущих сил и определения оптических свойств. Первые два метода пригодны и для определения констант ассоциации ионов. [c.123]

    Величина электродвижущей силы тесно связана с состоянием электролитов в растворах. Поэтому измерения э. д. с. широко применяются при исследовании многих свойств сильных и особенно слабых электролитов при определении констант диссоциации, констант гидролиза, ионного произведения среды, буферной емкости и т. д. Большое значение имеет измерение э. д. с. для определения pH. В тесной связи с изучением электродвижущих сил находятся вопросы стандартизации pH в водных и особенна в неводных растворах. Широкое применение имеет измерение электродвижущих сил в аналитической химии при потенциометрическом и полярографическом анализе и т. д. [c.378]


    Таким образом, разность потенциалов в водных растворах в отсутствие двойных ионных слоев отвечает контактному потенциалу, который имел бы место при погружении металлов в воду, если бы вода была изолятором. При других концентрациях, не отвечающих нулевым растворам, э. д. с. будет отличаться от только что рассмотренной на величину скачков потенциала в ионных двойных слоях. При этом ионные двойные слои образуются всегда так, что обусловленная ими э. д. с. удовлетворяет требованиям термодинамики. Из этого следует, что адсорбция каких-либо молекул на электродах, приводящая к изменению контактного потенциала — к изменению ионных двойных слоев, происходит всегда так, что электродвижущая сила остается прежней. Влияние адсорбции на потенциал двух металлов, погру- [c.384]

    Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. В настоящее время эти данные получены на основании подсчетов сумм и разностей химических энергий сольватации ионов в неводных растворах из данных об электродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водорода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов, как было сказано в гл. IV, была определена энергия сольватации протона и других ионов в различных растворителях. [c.419]

    Измерение электродвижущей силы необходимо производить только таким способом, при котором ток через элемент практически не проходит. В противном случае измеренная э. д. с. будет меньше, чем величина, определяемая как разность равновесных потенциалов обоих электродов. Нельзя определять э. д. с. элемента обычным вольтметром. Если замкнуть элемент на вольтметр, который потребляет некоторый ток, то электроны от электрода более отрицательного будут переходить к электроду более положительному. Вместе с этим начнется и движение ионов в растворе. В элементе возникает ток, в результате которого потенциалы электродов изменяются. Разность потенциалов между электродами уменьшится и э. д. с. замкнутого элемента будет меньше, чем разомкнутого. Уменьшение э. д. с. при замыкании элемента может быть также обусловлено протеканием химических реакций на электродах, которые вызывают изменение концентрации ионов у электродов и величины электродных потенциалов. [c.259]

    При качественном анализе, как уже указывалось выше, большое значение имеет величина pH исследуемого раствора. В некоторых случаях предварительная проверка среды раствора при помош,и лакмуса не является достаточной. Поэтому в качественном анализе пользуются более точными методами определения концентрации ионов водорода, или pH. Для быстрого и точного определения pH применяют лабораторный рН-метр типа ЛЛПУ-2, предназначенный для измерения pH водных растворов неорганических и органических солей, кислот и оснований, если активная концентрация ионов водорода в них находится в пределах Ю - до 10- г-ион и (pH от 1 до 10). Действие прибора основано на измерении развиваемой электродной парой (датчиком), опускаемой в анализируемый раствор, электродвижущей силы (э. д. с.), которая зависит от величины pH раствора. Наиболее точные физико-химические методы определения pH ввиду их сложности малопригодны для повседневных студенческих работ в лаборатории качественного анализа. Одним из более простых является колориметрический метод определения pH. Этот метод основан на применении реактивов, меняющих свою окраску в зависимости от концентрации ионов водорода. Такие реактивы получили название индикаторов. [c.171]

    Концентрация водородных ионов может быть также определена электрометрически путе..м измерения электродвижущей силы водородного электрода, по-мещенното. в раствор и соединенного с электродом известной элактродвижущей силы, каким является каломельный элемент. Если определенную таким образом электродвижущую силу сопоставить с электродвижущей силой нормального водородного электрода, то [Н ] возможно вычислить, пользуясь формулой Нернста (стр. 56)  [c.75]

    Свойства соляной кислоты в водных и неводных растворах, а также в смешанных водно-неводных растворителях были исследованы более подробно, чем свойства любого другого электролита, и они могут служить иллюстрацией основных свойств ионных растворов для того случая, когда отсутствуют затруднения, связанные с наличием ионов с зарядом больше единицы. В начале данной главы будет рассмотрен вопрос об определении степени диссоциации этой кислоты в средах с различной диэлектрической постоянной на основании данных об электропроводности. Затем будут подробно описаны свойства соляной кислотц на основании данных об электродвижущей силе элемента [c.311]

    Активность электролита определяется произведением активности его ионов. Если известна электродвижущая сила, то можно определить активность электродита, используя правило ионной силы, согласно которому коэффициент активности у данного электролита одинаков во всех растворах с равной ионной силой. Ионная сила — это полусумма произведений" из концентраций [c.101]

    Для измерения потенциала электрода по отношению к раствору необходим второй электрод. Первый электрод называется измерительным, и его потенциал функционально зависит от кон-аентрации водородных ионов раствора. Второй электрод называется сравнительным, и его потенциал должен оставаться постоянным. При соединении эти два электрода образуют гальванический элемент, электродвижущая сила (э. д. с.) которого и измеряется. Если в качестве сравнительного взять нормальный водородный электрод ( о = 0), то э. д. с. измерительного элемента с двумя водородными электродами составит [c.10]

    Исследуемый гальванический элемент обычно состоит из индикаторного электрода и электрода сравнения. Индикаторным называют электрод, потенциал которого зависит от концентрации (активности) определяемого иона. Потенциал электрода сравнения должен оставаться постоянным независимо от протекания каких-либо реакций в анализируемом растворе. Электродвижущая сила исследуемого элемента выражается как разность между потенциалом электрода сравнения ( ср) и потенциалом индикаторного электрода (Еинд)  [c.192]

    При построении графика зависимости э. д. с., определенной на подходящем потенциометре, от объема израсходованного стандартного раствора обычно, хотя и не всегда, получают S-образную кривую титрования, причем точка ее перегиба соответствует точке эквивалентности. Потенциометрические измерения как в водной, так и в неводных средах производятся одинаковым способом при помощи одних и тех же приборов. Отличие состоит только в составе солевого мостика, устанавливаемого между электродом и исследуе-дп,1м раствором, а при титровании в инертных растворителях имеются различия в способах экранирования и заземления сосуда, в котором производится титрование. При проведении кис.потно-основного титрования потенциал индикаторного электрода, погруженного в исследуемый раствор, зависит от активности ионов водорода в растворе. Электродвижущая сила определяется трубчатым потенциометром с болыпим внутренним сопротивлением. [c.161]

    Каждая пара имеет определенный окислительно-восстанови-тельный потенциал и представляет собой полуэлемент. Когда два полуэлемента соединяют проводником первого рода, образуется гальванический элемент, имеющий собственную электродвижущую силу (э. д. с.). Направление этой э. д. с. противоположно той внеш ней э. д. с., которую прилагают при электролизе. Действительно например при электролизе 1 М раствора U I2 потенциал образую щейся у катода пары u +/ u равен стандартному потенциалу ее т. е. +0,34 в (поскольку концентрация Си -ионов равна I г-ион/л а концентрация твердой фазы Си постоянна), потенциал пары I2/2 I равняется +1,36 в, когда раствор становится насыщенным относительно СЬ при давлении его в 1 атм. Как известно, пара с меньшим потенциалом ( u V u) отдает в цепь электроны. Следовательно, при работе возникающего в результате электролиза гальванического элемента на электроде происходит процесс Си—2е- Си +. При этом медь растворяется, окисляясь до Си -+. [c.427]

    Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элеглент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла. [c.80]

    Определение коэффициентов активности методом электродвижущих сил — прямой метод, так как потенциалы электродов зависят от активности ионов в растворе. Нанример, цепь Pt(H2) НС1 ( Ag I, Ag, которую используют для определения коэффициентов активности НС1, содержит один электрод, обратимый к иону водорода, а другой — к иону хлора. [c.33]

    Обычно данные об электродвижущих силах используются для подсчетов реальных свободных энергий гидратации ионов, отличающихся от химических энергий сольватации на величину работы, производимой при переносе ионов через поверхность раствора, потенциал которой ф С/п = = Лидр + [c.164]

    Величины энергии сольватации ионов, рассмотренные в предыдущих параграфах, как и величины энергии сольватации молекул, которые будут рассмотрены в следующей главе, имеют большое значение в теории растворов, так как ими определяются многие их свойства. Данные о химической энергии сольватации вместе с данными об энергии кристаллической решетки соли определяют такое важное свойство электролитов, как растворимость. Химические энергии сольватации ионов и молекул электролита вместе с данными о сродстве иопов диссоциирующих веществ определяют положение равновесия между ионами и молекулами электролита, т. е. константу их диссоциации. Химическая энергия сольватации ионов в значительной степени определяет электродвижущую силу химических элементов. Наконец, химическая энергия сольватации протонов определяет абсолютную кислотность растворов. [c.183]


Смотреть страницы где упоминается термин Сила ионная раствора электродвижущая: [c.181]    [c.206]    [c.210]    [c.268]    [c.212]    [c.239]    [c.175]    [c.68]    [c.71]    [c.33]   
Руководство по аналитической химии (1975) -- [ c.98 , c.118 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная сила

Ионная сила раствора раствора

Ионная сила растворов

Раствор ионный

Теплоемкость иона в растворе электродвижущим силам

Электродвижущая сила ЭДС



© 2025 chem21.info Реклама на сайте