Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серный жидкий

    Гидратация пропилена серной кислотой в жидкой фазе [c.54]

    За исключением этилена, реакция SO3, или дымящей серной кислоты, с олефинами идет весьма энергично с образованием продуктов окисления олефинов и SO2. С этиленом дымящая серная кислота дает ангидрид этионовой кислоты это является основной причиной того, что дымящая кислота или кислота, концентрация которой выше 98%, ие может применяться для конверсии этилена в этиловый спирт. Аигидрид этионовой кислоты можно легко получить пропусканием этилена в охлажденный раствор SO3 в жидкой двуокиси серы [3, 8]  [c.350]


    Радикально-каталитический метод. Основан на электрохимическом окислении. Процесс протекает с достаточной скоростью иа платиновом электроде при разности потенциалов, соответствующей началу разряда ионов ОН . Образующиеся промежуточные продукты — радикалы ОН обладают высокой реакционной способностью и окисляют диоксид серы в жидкой фазе. В качестве окислителя диоксида серы в жидкой фазе можно использовать надсерную кислоту, образующуюся ири электролизе серной кислоты. [c.62]

    Еще пример. Известно, что при взаимодействии серной кислоты и гидросульфида натрия образуется сероводород, являющийся сильнодействующим ядом. На одном заводе органического синтеза в насосном отделении склада жидких продуктов при подаче гидросульфида натрия из складской емкости в цех выбило прокладку во фланцевом соединении трубопровода, расположенного над поддоном с насосами, перекачивающими серную кислоту. При взаимодействии серной кислоты, оставшейся в поддоне, с гидросульфидом натрия произошло значительное выделение сероводорода. Обслуживающий персонал при выполнении операций по останову насосов получил отравления сероводородом. [c.85]

    Эти процессы предназначены для производства базовых масел различного уровня вязкости, деароматизированных жидких и твердых парафинов и специальных углеводородных жидкостей. Они основаны на избирательном выделении полярных компонентов сырья (смолистых веществ, кислород- и серосодержащих углеводородов, остатков избирательных растворителей) на поверхности адсорбентов. Высокая адсорбируемость полярных компонентой сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием полярных и поляризуемых компонентов сырья активными центрами поверхности адсорбента. В качестве адсорбентов при очистке и доочистке масел применяют природные глины (опоки или отбеливающие земли) и синтетические (силикагель, алюмогель и алюмосиликаты). Активность природных глин повышают обработкой их слабой серной кислотой или термической обработкой при 350—450 °С. Синтетические адсорбенты активнее, но значительно дороже природных. [c.273]

    Диоксид серы применяется для получения серной кислоты, а также в бумажном и текстильном производствах в качестве отбеливающего средства, для консервирования плодов и др. Жидкий SOj использует- [c.330]


    Естественный парафин освобождают от масла отмывкой жидким пропаном или другими растворителями (ацетон, дихлордиэтиловый эфир и т. п.) при охлаждении. Менее значительные примеси можно удалить промывкой парафина-сырца спирто-бензольными смесями или жидким сернистым ангидридом. После этого парафин в большинстве случаев очишают концентрированной серной кислотой и отбеливают землями или активированным углем. Хорошим средством для очистки оказалась разбавленная (около 8%) азотная кислота, которой обрабатывают парафины при несколько повышенной температуре [49]. [c.447]

    Если в масляном полупродукте очень много смолисто-асфальтовых веществ, то удаление их рассмотренными выше способами сложно и неэкономично в связи с большим расходом серной кислоты и растворителей. В этих случаях производится предварительная де-асфальтизация масляного полупродукта. При растворении масляного полупродукта в бензине или жидком пропане малорастворимые в них смолисто-асфальтовые вещества выпадают в осадок. После удаления осадка растворитель отгоняют от масла. Затем полупродукт подвергают очистке одним из описанных выше способов. [c.139]

    В 1795 г. путем отщепления воды от этанола с помощью концентрированной серной кислоты был получен этилен [1], ставший первым соединением ряда олефинов. Благодаря способности образовывать с хлором жидкий продукт, он получил название масло голландских химиков [2], от которого впоследствии было образовано наименование всего ряда простых ненасыщенных алифатических углеводородов. [c.7]

    Алкилирование изо.бутана бутеном-2 (молярное отношение 5 1, время контакта 20 мин.) в присутствии 100 %-ной серной кислоты нри температуре 10° дает жидкий продукт (выход 200%), 93% которого выкипает ниже 150° и имеет октановое число 94 [29]. Октановая фракция, выход, которой составлял 83—92% от теоретического, содержала около 40% [c.324]

    Процессы сульфирования относятся к числу наиболее экзотермических. При использовании жидкого серного ангидрида в качестве сульфирующего агента тепловой эффект реакции составляет 217 кДж/моль, несколько изменяющий ее направление в зависимости от характера ароматического соединения. При использовании в качестве сульфирующего агента 20% олеума тепловой эффект составляет 180 кДж/моль. [c.109]

    Скорость поглощения н-бутилена растет с повышением температуры до определенной максимальной точки, а затем слегка понижается при условии, что концентрация серной кислоты остается постоянной. Оптимальные темцературы оказались следующие 75° дпя 85 %-ной кислоты, 50° для 90 %-ной кислоты, 25° для 95 >Ь-ной кислоты и 0° для 100 %-ной кислоты. Выход жидкого полимера составлял приблизительно 70 % при температурах от О до 50° и снижался почти до 20 >о при 75°. Приводятся также данные по полимеризации бутиленов в присутствии пемзы, пропитанной концентрированной серной кислотой. [c.191]

    В значительной мере наблюдались реакции переноса водорода при обработке изопентана трет-бутилхлоридом при 13° в присутствии 98, 6 %-ной серной кислоты [27]. Выход изобутана составлял 87%. Жидкий продукт (выход 262 % вес. на изобутилен, который можно получить из хлорида) содержал гексаны, гептаны, октаны, нонаны и деканы с выходами от теоретического соответственно 28,25, 10,27 и 28%. Видимо, происходило разложение деканов, образовавшихся из изопентана. [c.333]

    Превращения в системе жидкость (газ) — жидкость. В такой системе превращения проводятся с целью получения необходимых продуктов или извлечения определенного компонента из какой-либо фазы. К первой группе этих процессов относится, например, нитрование органических соединений смесью азотной и серной кислот (процесс в системе двух несмешивающихся жидкостей) или хлорирование жидких ароматических углеводородов (процесс в системе газ — жидкость). Примером второй группы процессов может служить очистка синтез-газа с помощью абсорбции нежелательного компонента жидкостью, в которой проходит химическая реакция с этим компонентом. [c.250]

    Удобный метод изомеризации углеводородов в присутствии серной кислоты заключается в простом эффективном перемешивании двух жидких фаз в течение требуемого времени при обычном давлении.- Применяется довольно узкая температурная область — большинство работ проводилось при температурах от О до 60°. [c.33]

    В отличие от галоидных солей алюминия серная кислота изомеризует только углеводороды, которые имеют одновременно вторичные и третичные атомы углерода. Так, например, такие углеводороды, как -парафины, 2, 2-диметилбутан и т. д., не участвуют в реакции ни как исходные вещества, пи как конечные продукты. За исключением отдельных случаев, изомеризация жидких парафинов в присутствии серной кислоты не сопровождается крекингом, как при изомеризации галоидными солями алюминия  [c.52]


    Максимальный выход жидкого полимера из изобутилена был получен при температуре, близкой к 0°, и концентрации серной кислоты от 85 до 90 %. Полимер изобутилена содержал большие количества низкокипящих компонентов и показывал более высокую степень непредельности по сравнению с полимером, полученным из бутилена. В присутствии 90%-ной кислоты при 0° приблизительно 85%) изобутилена превращалось в жидкий полимер, выход растворимого в кислоте масла составлял всего 1—2 %. Имеются также данные по полимеризации изобутилена при—20°. [c.191]

    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]

    Тот факт, что продукты, получаемые при алкилировании бутенами-1 и -2 в присутствии серной кислоты и фтористого водорода, меньше различаются между собой, можно легко объяснить, если предположить, что при контактировании смеси изобутана и бутена-1 или -2 с жидким фтористым водородом или серной кислотой наиболее легко проходит реакция присоединения кислоты к олефиновому углеводороду с образованием втор-.бутилового эфира. В результате получается равновесная смесь  [c.326]

    Хорошо известно, что растворы серного ангидрида в серной кислоте являются превосходными носителями активного серного ангидрида. Таким же образом эти жидкие комплексы можно рассматривать как носители активного хлористого алюминия. [c.433]

    С эксплуатационной точки зрения процесс с использованием жидкой серной кислоты более сложен. Концентрация кислоты является решающим фактором, поэтому необходимо поддерживать ее в определенных узких пределах (именно ниже 90%, температура 40°) во избея апие сульфирования ароматических и олефиновых углеводородов. Сульфирование кумола идет легче, чем бензола. Серьезным фактором становится также коррозия аппаратуры особенно в тех местах, где скорость потока большая. На рис. 8 показана упрощенная технологическая схема. [c.500]

    Выделение изобутена из Б-Б-фракции [49]. Прежде чем подробно рассматривать разделение парафинов и олефинов, которые могут содержаться во фракции С4, следует коротко остановиться на выделении изобутена экстракцией 65%-ной серной кислотой. Экстракция фракции С4 65%-ной серной кислотой проводится под давлением, гарантирующим протекание процесса в жидкой фазе. При этом образуются два слоя нижний, состоящий из трет-бутилсерной кислоты и верхний — свободный от изобутена. При поддержании определенной температуры, концентрации кислоты и времени контакта можно практически количественно извлечь изобутен из верхнего слоя. Из трет-бутилсерпой кислоты большую часть изобутена удается регенерировать разбавлением трете-бутилсерной кислоты, примерно до 45%-ной крепости, водой и последующей отдувкой водяным паром. Освобождающийся при этом газ после промывки водой компримируется, конденсируется и подвергается ректификации нод давлением. [c.78]

    Изонроииловый спирт, легко получаемый непосредственным гидратированием иронена серной кислотой, обрабатывают кислородом в присутствии перекиси водорода при температуре 90— 140° под давлением 2,5 ат. При этом в жидкой фазе идет реакция с образованием ацетона и перекиси водорода [c.178]

    В промышленности алкилирование бензола пропиленом в жидкой фазе обычно осуществляется в присутствии серной кислоты [24— 30]. Ниже описан процесс работы на установке фирмы Petroleum Ind. Maats happij. Используется пропилен, не содержащий этилен, что необходимо во избежание образования этилсерной кислоты. Бензол же с содержанием незначительного количества тиофена Еполтге пригоден. [c.264]

    Кумол от высокоалкилированных продуктов отделяется в колонне, работающей при нормальном давлении. Само алкилирование проходит при давлении 11,5 ат и температуре 30—40°, т. е. при условиях, обеспечивающих протекание реакции в жидкой фазе. Молярное соотношение бензола к пропену составляет 5 1, объемное соотношение серной кислоты к углеводородной смеси 1 1, время пребывания в реакционном сосуде 20—30 мин. [c.231]

    Смешанные богатые газы (при переработке упоминавщихся 250 м час угольной пасты образуется около 15 000 м 1час богатого газа на жидкой фазе процесса и 5000 ж /час а паровой) подвергают алкацид-пой очистке при давлеиии около 2 ат и дополнительно щелочной промывке для полного удаления остаточного сероводорода. Небольшие количества сероводорода в объединенных богатых газах получаются частично в результате расщепления сернистого карбонила и меркаптанов, еще содержащихся в богатых газах жидкой фазы после предварительной алкацидной очистки (см. стр. 33 оригинала), и частично за счет сероводорода, добавляемого для осернения катализатора бензинирования. Извлекаемый сероводород снова используется для осернения катализатора, а избыток перерабатывается на серную кислоту или элементарную серу. [c.43]

    Для предотвращения доступа хлора к деталям насоса хлор перекачивают путем создания подушки из концентрированной серной кислоты, в которой жидкий хлор практически нерастворим. Для того чтобы предотвратить забивание обратного клапана твердыми частицами, жидкий хлор дополнительн-о фи. 1ьтруют через стеклянную вату. [c.190]

    Сульфирование феиилалкапов можно проводить также серным ангидридом в виде его раствора в жидком сернистом ангидриде [249]. Более целесообразно применять для сульфирования новый жидкий продукт сульфан , состоящий из стабилизованного,. мономерного серного ангидрида [250]. -В США арилсульфонаты вырабатывают в настоящее время в чрезвычайно больших количествах. [c.249]

    Задача 11.2. Определить выход пульпы (в килограммах), массу веществ в жидкой фазе пульпы и массу раствора разбавления при сернокислотной экстракции ( )осфорпоГ1 кислоты пз апатитового концентрата массой 100 кг, если массовое отношение ж/т пульпы равно 2,5/1, гппсо1зое чпсло—1,6, масса веществ, выделяю-п ихся в газовую ([зазу, составляет 5 кг, а расход серной кислоты — 117,9 кг. [c.174]

    Полученную после сульфирования сульфокислоту разла1али по методу Кпжнера [7], усовершенствованному Казанским и Гасан-Заде [8], Смесь сульфокислоты и серной кислоты отделяли от деароматизированного бензина, добавляли на один объем кислоты три объема воды, переносили в колбу Вюрца, температуру кипящей жидкости измеряли опущенным в нее термометром. Перегонку проводили при 155— 160 С, П0 ле чего оставляли на ночь для выкрнсталлизации сульфокислоты. На второй день на воронке Гутча отделяли кристаллическую сульфокислоту от составной части жидкости. Жидкую часть снова помещали в колбу Вюрца, добавляли тройной объем воды и нагревали до 155—160°С, оставляли на почь и, если на второй день не имело место выделение кристаллической сульфокислоты, нагревали до 210°С. Гидролиз кристаллических сульфокислот проводили следующим образо.м к одной весовой части сульфокислоты добавля- [c.20]

    Тгтраоксосульфат (VI) водорода Н2504 — маслянистая жидкость, замерзающая при Ю,4°С. Его получают при охлаждении концентрированной серной кислоты. В твердом н жидком состоянии молекулы связаны водородными связями. Жидкий — ионизирую- [c.333]

    Собственная ионизация жидкого HNO3 незначительна. С водой HNOg смешивается в любых отношениях. Его растворы — сильная кислота, называемая азотной. В лаборатории азотную кислоту получают действием концентрированной серной кислоты на нитрат натрия. Промышленное производство HNOg осуществляется по стадиям скисление HgN в N0 кислородом воздуха на платиновом катализаторе  [c.356]

    В смесительные секции реактора —алкилатора Р в первую секцию виодятся циркулирующая и свежая серная кислота и жидкий изо — бутан. Из отстойной секции алкилатора выводятся продукты алки — лирования, которые после нейтрализации щелочью и промывки водой направляются в колонну К-2 для отделения циркулируемого изобутана. При некотором избытке в исходном сырье предусмотрен е О вывод с установки. Испарившиеся в реакторе изобутан и пропан чэрез сепаратор Р —рессивер компрессором через холодильник подаются в колонну —депропанизатор К—1. Нижний продукт этой колонны — изобутан — через кипятильник и теплообменник присоединяется к циркулирующему потоку изобутана из К — 2. Нижний продукт колонны К-2 поступает в колонну дебутанизатор К-3, а остаток К — 3 — в колонну К-4 для перегонки суммарного алкилата. С верха этой колонны отбирается целевой продукт — легкий алкилат, а с низа — тяжелый алкилат, используемый обычно как компонент дизельного топлива. [c.146]

    Полезны также некоторые катионогенные эмульгаторы, подобные бромиду цетилдиметилатиламмония ( этилцетаб ) и др. Латекс следует хорошо подкислить концентрированной соляной или серной кислотой. Однако здесь есть ограничения, так как избыток кислоты может вызвать образование гидрохлорида каучука или циклизацию его. Хлор пропускается прямо в подкисленный латекс при комнатной температуре в течение приблизительно 20 час., чтобы получить хлорированный каучук с содержанием хлора около 60%. Последующее хлорирование можно проводить жидким хлором или пропусканием хлора в раствор продукта, выделенного из латекса в четыреххлористом углероде. Технические преимущества хлорирования каучука в виде латекса, по сравнению с растворами его следующие гораздо болос высокая концентрация каучука и легкость охлаждения во время реакции менее вязкого латекса [36]. [c.221]

    Сульфиды (СгИвЗСгИб, СзНтЗСзН и т. д.) —жидкие вещества с неприятным запахом. Сульфиды Сг—С имеют низкие температуры кипения — от 37 до 150°С. По химическим свойствам это нейтральные вещества, не реагирующие со щелочами, хорошо растворяющиеся в серной кислоте. При 400 °С и выше сульфиды разлагаются на сероводород и непредельные углеводороды. [c.169]

    Жидкостно-контактный метод. Основан на окислении дноксида серы в жидкой фазе на поверхности катализатора, например активного угля. По мере увеличения концентрации серной [c.61]

    Применение цеолитов и оксидов металлов дает возможность проводить адсорбцию при высоких температурах и получать при оптимальных условиях регенерации сорбентов газы с кон-цептрацпей диоксида серы до 25%, который можно переработать в жидкий диоксид серы или серную кислоту. [c.63]

    Катализаторы, ускоряющие полимеризацию газообразных олефинов Э жидкие, имеют главным образом кислую природу "И включают 1) кислоты такие, как серная, фосфорная, дигидроксифторборная 2) фосфаты металлов 3) природные гидрориликаты и синтетические алюмосиликаты разного состава 4) соли галоидоводородных кислот, особенно галоидные соли металлов типа Фриделя—Крафтса. Катализаторами полимеризации также являются некоторые металлы и их соединения. [c.187]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Что реакция деиолиалкилирования действительно идет с полимерами изобутилена, видно из результатов взаимодействия изобутана с тримером бутилена, полученным горячекислотной полимеризацией в ирисутствии 100%-ной серной кислоты при 10° [29]. Жидкий продукт (166% вес. на тример) состоял из 60—65% триметилпентанов и 10—15% додеканов. Выход последних соответствует 17—25% от теоретического по реакции переноса водорода. Выход триметилпентанов составляет 146—159% от теоретического, исходя из реакции переноса водорода. Отсюда мон но заключить, что ббльшая часть триметилпентанов образовалась в результате деполимеризации тримера в бутилен до реакции конденсации с изобутаном выход триметилнентанов составляет 49—53 % от теоретического, считая на полное денолиалкйлирование но уравнению [c.328]


Смотреть страницы где упоминается термин Серный жидкий: [c.13]    [c.135]    [c.232]    [c.52]    [c.442]    [c.190]    [c.190]    [c.191]    [c.212]    [c.433]   
Основы общей химии Т 1 (1965) -- [ c.333 ]

Основы общей химии том №1 (1965) -- [ c.333 ]




ПОИСК







© 2024 chem21.info Реклама на сайте