Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ свойств компонентов и смесей

    Предварительный анализ свойств компонентов и смеси уже позволяет выделить группы альтернативных способов получения чистых компонентов, однако в большей степени полезен при выполнении анализа фазового и химического равновесия, так как сужает область экспериментальных и расчетных исследований. Например, если смесь относится к гомогенным без азеотропов с большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако, очевидно, особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, вакуумная ректификация или под давлением, мембраны, кристаллизация и т. д.). Ясно, что выбор оптимального способа разделения должен производиться на основе более полного расчетного и, возможно, экспериментального исследования. [c.97]


    Генерация схем производится с учетом выявленных ранее ограничений и оценок. Этапы, предшествующие непосредственно синтезу оптимальной схемы, позволяют сформировать список компонентов с учетом образования азеотропных смесей в процессе деления, добавления разделяющих агентов или избытка отдельных компонентов для обеспечения или исключения азеотропных условий, т. е. формализовать в некоторой степени этап синтеза, основанный на опыте и интуиции проектировщика. Список формируется также с учетом оригинальных разработок для разделения отдельных компонентов смеси и их физико-химических свойств. В результате этого выявляется стратегия целенаправленного поиска оптимальной схемы. Заметим, что список компонентов может отличаться от исходного питания по количеству, составу, числу компонентов. Непосредственно генерация вариантов схем заключается в анализе списка компонентов, выборе сечений и оценке получаемых схем, в том числе с учетом рекуперации тепла. Поскольку список компонентов формируется исходя из реальных условий протекания процесса (например, фазовое равновесие), математические модели должны воспроизводить эти условия. Однако если разделяемая смесь не содержит сильно неидеальные системы, то расчет можно проводить и по упрощенным методикам, поскольку такие системы чаще всего многовариантные. На рис. 2.10 схематически приведена взаимосвязь этапов синтеза. [c.142]

    Если исследуется не один, почти гомогенный уголь, а смесь разнородных углей, общие показатели анализов, такие как содержание углерода или выход летучих веществ, характеризуют усредненную степень метаморфизма. Если свойства компонентов смеси не очень сильно различаются между собой, средняя степень метаморфизма также находится в пределах показателей свойств всей пробы. Например, смесь 50 50 углей с показателями выхода летучих веществ 22 и 28% будет соответствовать достаточно близко углю с выходом летучих веществ 25%. Но этого не будет, если показатели степени метаморфизма компонентов смеси слишком далеки друг от друга. Можно получить для смеси тощего и длиннопламенного углей такой же средний показатель выхода летучих веществ, но, конечно, такая смесь не будет подобна жирному углю. [c.66]

    В большинстве случаев в качестве газа-носителя применяют азот (чистый или с пониженным содержанием кислорода). Его преимуществами являются низкая стоимость, простота очистки и безопасность в обращении. Теплопроводность азота близка к теплопроводности большинства органических веществ, поэтому при количественном анализе с детекторами по теплопроводности при применении азота получают приближенные результаты. В этом случае лучше проводить калибровку прибора для каждого компонента смееи. В случае органических соединений, относящихся к одному гомологическому ряду, калибровка не обязательна. Для хроматографических целей надо применять возможно более чистый водород. Следует Отметить высокую теплопроводность водорода, которая значительно выше Теплопроводности большинства органических соединений. При употреблении детектора по теплопроводности это свойство выгодно сказывается [c.493]


    Физико-химические (в том числе теплофизические) свойства жидких и паровых смесей, необходимые для анализа и технологического расчета процессов дистилляции и ректификации, определяются свойствами составляющих смесь индивидуальных компонентов и зависят от состава смеси. Наиболее надежные сведения о таких свойствах дает эксперимент. В ряде случаев удается построить модели, позволяющие учесть взаимодействие компонентов в фазах и с приемлемой точностью рассчитать свойства смеси по свойствам индивидуальных компонентов и их концентрациям. При слабом взаимодействии компонентов свойства смеси с точностью, достаточной для инженерных расчетов, иногда могут быть найдены по аддитивности (см. разд. 10.2.2). [c.971]

    В целях простоты изложения ниже анализ и расчет процессов проводятся на примере дистилляции бинарных смесей. По КФ-классификации такие смеси относятся к классу 2(2-2)2. В ходе анализа с равным основанием могуг быть использованы мольные (х, у) и массовые (а, а) концентрации НКК в жидкой и паровой фазах. Поскольку равновесные данные в литературе представлены в основном для мольных концентраций, то материальные расчеты чаще всего ведут в мольных величинах (потоках, концентрациях). Вместе с тем удельные теплофизические свойства компонентов и фаз в справочниках обычно отнесены к единице массы поэтому тепловые расчеты чаще ведут на основе массовых величин. Подчеркнем в подавляющем большинстве процессов дистилляции отсутствует инерт-, поэтому расчеты ведут на всю смесь, т.е. используют абсолютные концентрации. [c.989]

    Неполярные привитые сорбенты (класс IV) применяются в основном в ОФ ЖХ. Обычно в этом случае применяют относительно неполярные сорбенты (например, углеводороды Се или ig) в сочетании с очень полярными растворителями. В простейшем варианте компоненты пробы неионогенные, а растворитель чаще всего представляет собой водноорганическую смесь, основу в которой составляет вода. В качестве органических компонентов наиболее часто используются метанол и ацетонитрил. В хроматографии с обращенными фазами для анализа высокополярных компонентов можно использовать в качестве растворителя воду. Напротив, для анализа неполярных веществ могут потребоваться безводные растворители. Относительная инертность и стабильность привитых фаз углеводородной природы позволяет использовать растворители с различными физико-химическими свойствами. Это обеспечивает необычайно широкое применение хроматографии с привитыми фазами в сравнении с другими вариантами ЖХ (о повышении селективности см. гл. V). [c.386]

    Смеси состоят из отдельных частиц — молекул разных веществ, сохраняющих свои индивидуальные качества. Поэтому смесь можно разделить на составляющие части простыми физическими методами, используя индивидуальные свойства компонентов, входящих в ее состав. Для этого применяют соответствующий анализ. Анализ— разложение сложных веществ или смесей на составляющие компоненты и определение их соотношения в изучаемом объекте. Противоположный метод познания, используемый в химии, называется синтезом. Синтез — процесс получения из нескольких простых или сложных веществ новых большей массы и, как правило, больших размеров. Совокупность этих методов составляет основу химических исследований. [c.8]

    Физические методы количественного анализа бинарных смесей терпенов. Если исследуемая смесь терпенов состоит только из двух определенных компонентов, то вопрос о ее количественном составе может быть быстро и достаточно надежно решен путем применения физических методов исследования. Когда анализируемая смесь состоит из близких по своей природе веществ, например из двух терпеновых углеводородов, то без существенной погрешности можно считать, что многие физические свойства смеси (например, показатель преломления, угол вращения плоскости поляризации и плотность) аддитивно складываются из физических свойств ее компонентов. В этом случае, какое-либо физическое свойство смеси Ф связано с теми же физическими свойствами компонентов смеси Фх и следующим уравнением,- [c.174]

    Необходимо здесь отметить, что хотя для физико-химического анализа гомогенных систем представления, развитые Сторонкиным,имеют определенный интерес, однако, как справедливо указывал Аносов, растворы, состоящие только из недиссоциированного соединения АВ и А или В, являются только частным случаем. Обычно образовавшееся соединение частично диссоциирует, и даже чистые компоненты А и В уже представляют смесь различных видов молекул, свойства которых определяются различными уравнениями связи. Диаграмма состав — свойство является совокупностью равновесных кривых для каждого вида молекул, образующих систему. [c.223]


    Применение необходимого наполнителя хроматографической колонки определяется в зависимости от предполагаемого химического состава сложных веществ, подвергаемых анализу. Известно, что индивидуальные компоненты, составляющие исследуемую смесь, должны различаться сорбционными свойствами по отношению к наполнителю колонки, так как только в этом случае они смогут разделиться. Этим и определяется выбор того или иного сорбента. [c.67]

    Метод разгонки при низких давлениях и температурах обеспечивает практически полное разделение углеводородов с большим интервалом температур кипения — метана, этана, пропана и бутана (см. физические свойства этих газов). Этот метод чаше всего используют для анализа природных и попутных газов. Анализируемый газ охлаждается и переходит в жидкое состояние. Смесь разделяют, откачивая паровую фазу, имеющуюся над охлажденной жидкостью. Так как давление паров компонентов смеси над поверхностью сжиженного газа зависит от температуры, соответствующим подбором температуры анализируемую смесь можно разделить на отдельные компоненты и фракции. [c.158]

    Образец какого-либо вещества может оказаться смесью двух или большего числа других веществ. Смеси не имеют определенного состава и могут быть разделены на компоненты (составные части) в результате физического превращения другими словами, при этом не образуются новые вещества. Существуют гомогенные смеси, любая сколь угодно малая часть которых имеет такой же состав, как любая другая микроскопическая часть. Если смешение компонент достигает молекулярного уровня, т. е. перемешанные частицы обладают молекулярными размерами, смесь называется раствором. В качестве примера приведем раствор хлорида натрия в воде такой раствор имеет однородный состав, потому что хлорид натрия равномерно распределен по всей воде. Однако раствор хлорида натрия не имеет определенного состава, так как его компоненты могут быть смешаны в самых различных отношениях. Гетерогенные смеси не имеют однородного состава. Обычно одна часть такой смеси заметно отличается по цвету, твердости и другим свойствам от соседних частей смеси. В качестве примеров гетерогенных смесей, встречающихся в природе в естественном состоянии, можно привести дерево и гранит. В некоторых случаях, однако, гетерогенная смесь выглядит гомогенной и для выяснения ее подлинного характера требуется детальный анализ. Такой смесью является уголь—хотя он выглядит однородным, его нетрудно разделить на отдельные компоненты. На [c.19]

    В ХИМИИ лекарственных вешеств и органическом синтезе исследователь чаще всего работает с относительно простыми смесями, содержащими не более 5—10 компонентов. Если компоненты не слишком различаются по своим свойствам, обычно удается подобрать такую подвижную фазу, которая обеспечивает приемлемые скорость анализа и разделение. Однако в отдельных случаях смесь может содержать вещества, сильно различающиеся по сорбционным свойствам, и, следовательно, для анализа таких соединений требуются подвижные фазы различной элюирующей силы. На рис. 4.19 приведены хроматограммы смеси, для которой не удается подобрать изократический (т. е. при постоянном составе подвижной фазы) режим разделения. В противоположность этому режиму под градиентным элюированием понимают такой способ проведения хроматографического [c.117]

    Необходимым условием применения этого метода является регистрация всех компонентов пробы и одинаковая чувствительность детектора к разным веществам. Для большинства детекторов это, в общем, справедливо, если анализируется смесь родственных соединений, молекулярные массы которых значительно не различаются или все компоненты пробы имеют большие молекулярные массы. Например, не требуется калибровка при анализе смеси циклогексана и бензола или при анализе изомеров ксилола. Этот вариант метода имеет ограниченное применение. В большинстве случаев приходится учитывать разный отклик детектора к различным веществам пробы с помощью калибровочных коэффициентов, зависящих от свойств вещества, способа детектирования, а также от конструкции детектора. [c.114]

    Если не удается выполнить анализ без разделения компонентов, то используют те же принципы разделения, что и при макроанализе. Они основаны на различии в растворимости лекарственных веществ. С помощью воды, этилового спирта, ацетона, хлороформа можно разделять смесь, состоящую из веществ, растворимых и не растворимых в указанных растворителях. Растворы кислот, щелочей, буферные растворы позволяют последовательно извлекать из смеси вещества, различающиеся по кислотно-основным свойствам. Идентификацию выделенных индивидуальных лекарственных веществ осуществляют теми же реакциями, которыми испытывают субстанции на подлинность. [c.248]

    Не -1- Ne, а поглощенный сумму Аг + Кг -Ь Хе. Многочисленные наблюдения показали что содержание Ne, Кг и Хе в природных газах очень мало по сравнению с содержанием Не и Аг, поэтому не поглощенный углем газ принимают за гелий, а поглощенный — за аргон. Во всяком случае для большинства практических целей подобное предположение вполне допустимо. Таким образом, при всех анализах, когда интересующим объектом является гелий или аргон, можно считать, что смесь редких газов состоит из двух компонентов. Следовательно, анализ этой бинарной смеси может производиться путем определения какого-либо физического свойства этой смеси. Подобный метод анализа на редкие газы и был предложен автором настоящей монографии. Анализ бинарной смеси можно производить путем измерения удельного веса или коэфициента преломления или путем сравнения теплопроводности анализируемой смеси и стандартного газа. Схема прибора, основанного на подобных измерениях, представлена на фиг. ЮЗ, б. Этот прибор состоит из бюретки 7, трубки с металлическим кальцием 4, манометра 2 и газовых микровесов или камеры для сравнения теплопроводности газа J [34]. [c.272]

    Рефрактометрия находит применение как для определения состава двухкомпонентных растворов, так и тройных систем. Однако в последнем случае, кроме определения показателя преломления, необходимо установить значение хотя бы еще одного свойства, величина которого зависит от состава системы, например плотности раствора. Рефрактометрический анализ сложных систем целесообразен в тех случаях, когда систему в силу определенных условий можно рассматривать как двойную или тройную. Например, если растворенные вещества представляют собой смесь относительно стабильного состава, всю ее можно уподобить компоненту бинарной системы, считая другим компонентом растворитель. Такой подход к задаче возможен при установлении суммарного солесодержания раствора или общего содержания любых других растворимых веществ. Это бывает необходимо при работе с рассолами постоянного состава (например, морская вода), при контроле сахароварного производства. [c.100]

    Одним из методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод анализа (хроматография). При хроматографическом разделении используются различные физико-химические свойства отдельных компонентов смеси. Например, разница в растворимости образующихся осадков, в распределении компонентов смеси между двумя несмешивающимися жидкостями, в адсорбции компонентов смеси на поверхности твердой и жидкой фазы и т.д. Во всех случаях разделения, как правило, участвуют две фазы — твердая и жидкая, твердая и газообразная и т. п. Процессы сорбции, осаждения, ионного обмена, распределения между фазами различного состава протекают непрерывно, при последовательном многократном повторении. Такой процесс осуществляется в хроматографической колонке (рис. 157). Анализируемая смесь в виде раствора (жидкая фаза) фильтруется через колонку, содержащую слой сорбента (твердая фаза). Каждое из растворенных веществ адсорбируется на определенном участке и образуются зоны адсорбции (первичная или фронтальная хроматограмма). При последующем промывании колонки чистым растворителем получают проявленную хроматограмму, т. е. разделение компонентов смеси. [c.298]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]

    Хальденвангер [194] наиболее полно сформулировал требования, предъявляемые к эталонным смесям 1) по свойствам эталонная смесь должна приближаться к идеальному раствору, т. е. практически без отклонений подчиняться закону Рауля и иметь относительную летучесть компонентов, постоянную для всех концентраций 2) данные по равновесию пар— жидкость должны быть известны или их можно легко рассчитать 3) смесь должна состоять только из двух компонентов во избежание трудностей при измерениях и расчетах 4) относительная летучесть компонентов должна иметь такое значение, чтобы в испытуемой колонне достигалось достаточное, но не слишком большое разделение 5) температуры кипения смеси должны лежать в интервале, для которого нетрудно подобрать надежную тепловую изоляцию колонны 6) компоненты смеси должны быть термически стойкими в условиях ректификации 7) вещества и их смеси не должны вызывать коррозии конструкционных материалов, использованных в аппаратуре 8) исходные вещества должны быть легко доступными 9) вещества не должны содержать примесей их чистота должна поддаваться проверке доступными методами 10) смеси с любой концентрацией компонентов должны легко поддаваться анализу. [c.140]

    Технологическая xeMa разделения указанной смеси (рис. 1) была разработана на основании термодинамико-топологическсго анализа структуры диаграммы фазового равнове сия жидкость — пар разделяемой сложной неидеальной сМеси, где использовались данные проведенных нами ранее исследований физико-химических свойств компонентов, входящих в эту смесь (3). [c.155]

    Если различие свойств компонентов достаточно велико и разделение происходит очень четко, то можно выделить отдельные индивидуальные газы и даже их изотопы. Если же это различие недостаточно и разделение происходит не очень четко, то удается выделить лишь отдельные фракции газовой смеси. Каждая из фракций может состоять, например, из двух компонентов с примесью или без примеси одною-двух других и может быть подвергнута дальнейшему анализу. Поэтому если даже удается разделить газовую смесь пе на индивидуальные компоненты, а только на фракции, содергкащие два-три компонента, то и такое разделение сильно облегчает анализ сложной газовой смеси. [c.24]

    Самыми простыми смесями являются смеси, состоящие из двух компонентов. Если число компонентов больше двух, то анализ смеси можно упростить, рассматривая процесс как смешение каждого компонента в отдельности со всей остальной системой. Таким образом, в ряде случаев многокомпонентную смесь можно свести к двухкомпонентной. В том случае, если свойства исходных компонентов описываются с помощью безразмерных параметров, также можно упростить анализ смеси. Смесь следует описывать таким образом, чтобы какое-то отличительное свойство компонента, присутствующего в системе в наименьшем количестве, можно было характеризовать 1,0. Тогда свойства других компонентов равны 0. Например, если смешиваются черные и белые частицы, то свойством, подлежащим количественной оценке, может быть доля черных частиц в пробе смеси. Эта доля равна 1,0 в исходном черном материале и О—в белом. Последующие изменения (в концентрации, весовой доле, объемной доле, отношении концентраций и т. д.) зависят от свойств, которые анализируются в каждой смеси, и от характеристик каждого из исходных материалов. [c.133]

    При синтезе бисэтилбензолхрома по восстановительной реакции Фриделя—Крафтса (метод Фишера) получается не индивидуальное веш,ество, а смесь ареновых производных хрома и различных ароматических углеводородов. Предложенная в работе [6] методика хроматографического анализа продуктов пиролиза или кислотного распада этой смеси не позволяет получить полного представления о ее составе. Фракционированная перегонка в вакууме, обычно применяемая для очистки бисэтилбензолхрома , из-за близости физико-химических свойств компонентов также не дает возможности выделить их в чистом виде. [c.123]

    Хроматографический метод анализа газов основан на различии адсорбционных свойств компонентов газовой смеси. При движении смеси газов через слой сорбента различная сорбируемость отдельных его компонентов вызывает различные скорости движения. Менее сорбируемый компонент газа (обладающий меньшим сорбционным средством с адсорбентом) будет двигаться с большей скоростью через слой сорбента. Более сорбируемый— с меньшей скоростью. И в результате этого произойдет полное отделение менее сорбируемого компонента от более сорбируемого. Для углеводородных газов адсорбция на ряде сорбентов возрастает с увеличением их молекулярной массы. Таким образом, если в хроматографическую колонку (трубку, заполненную сорбентом, например силикагалем) впустить смесь метана и бутана и заставить эту смесь двигаться вдоль колонки, то из колонки выйдет сначала метан, а затем бутан. [c.144]

    Под анализом нефти и ее дериватов чаще всего понимают последование, направленное к выяснению чисто технических свойств, имею-пщх значение прн переработке нефти или при использо(вапии ее в качестве топлива. Современная аналитическая химия не дает никаких быстрых и вполне надежных методов индивидуализащии компонентов нефти, почему нефть находит себе самое разнообразное применение не как хими 1еское вещество в уз ком смысле слова, а как очень сложная смесь их. Собственно химический анализ нефти является поэтому совершенно подчиненным отделом общего анализа ее. [c.14]

    Исходная смесь и разделяющий агент загружаются в j, производится обычная разгонка, в процессе которой пос едова. тельно отбираются небольшие порции дистиллата. При этом контролируется температура отгонки и физические свойства отобранных фракций (чаще всего показатель преломления удельный вес). После отделения разделяющего агента из фракций дистиллата, измеряются физические свойства или процзвд. дится химический анализ выделенных веществ для onpefle gHjjj, их состава. Границы фракций различных азеотропов и разделяющего агента определяются так же, как и при обычной разгонке. Для этого пользуются графиком зависимости температуры паров вверху колонки от объемной доли отобранного дистиллата. Загрузка разделяющего агента берется равной цлн несколько превыщающей количество его, требующееся Ддд гонки компонентов, отбираемых в качестве дистиллата в виде азеотропов. [c.199]

    Наиболее распространенным методом определения объемного состава газовых смесей в настоящее время является хроматографический. Этот метод анализа основан на различии адсорбционных свойств газов при прохождении их через слой сорбента. В настоящее время хроматографический анализ получил большое распространение из-за его относительной простоты, достаточной точности и малой затраты времени. На рис. П-2 представлена принципиальная схема хроматографа марки ГСТЛ, выпускаемого заводом Моснефтекип. Действие прибора основано на поглощении отдельных компонентов смеси сорбентом, заполняющим колонки 5. В качестве сорбента применяются активированный уголь, окись алюминия, силикагель или так называемые молекулярные сита. Исследуемая газовая смесь транспортируется через прибор газом-носителем. В качестве газа-носителя обычно используется воздух, его поступление регулируется дросселем 1. Пройдя поглотитель 2, одна часть которого заполнена щелочью, а другая — силикагелем, осушенный и очищенный газ-носитель поступает в пробоотборник 3. Из пробоотборника смесь краном 4 направляется в сорбционные колонки, выполненные в виде четырех последовательно соединенных трубок 5, заполненных сорбентом. Колонки снабжены нагревательными спиралями, питаемыми переменным током через автотрансформатор. В результате нагрева сорбента изменяется его способность поглощать различные [c.47]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Химический состав органического аэрозоля весьма сложен. В органическом компоненте атмосферного аэрозоля обнаруживают сложную смесь разнообразных алифатических и ароматических соединений, массовая концентрация которых обычно мало отличается от 1 г/см , сложные белковые соединения и др. Исследования проб атмосферных осадков и аэрозольного вещества на фильтрах показали, что растворенная в спирте фракция в высушенном состоянии представляет собой коричневую аморфную массу, в инфракрасном спектре которой наблюдаются полосы поглощения 2,8 6 и 7 мкм [292]. Менее окисленные органические соединения по сравненению с экстрактированным спиртом были получены промывкой сухого аэрозольного вещества в бензине. Полученная желтоватая маслянистая масса характеризуется полосами 2,8 3,4 5,8 и 6,9 мкм. Однако полученные экстракты детальному химическому анализу не подвергались. Имеющиеся сведения о химическом составе органического компонента атмосферного аэрозоля крайне бедны, что затрудняет исследования оптических свойств органического аэрозоля и выявление роли этого компонента в лучистом теплообмене атмосферы. [c.55]

    Очень часто анализ морфологических картин неориентированных кристаллических и аморфных полимеров и их смесей затруднен отсутствием четких канонических структурных признаков (сферолиты, ламели и т. д.). Поэтому для выяснения вопроса о том, существует ли в исследуемых смесях совместимость на надмолекулярном уровне, был применен метод, основанный на переводе смесей в ориентированное состояние. Если совместные надмолекулярные структуры образуются, то смесь при этом деформируется как одно целое если же система двухфазна, то ориентация способствует расслоению на фазы из-за различных свойств полимеров. Таким образом, переход в ориентированное состояние может способствовать выявлению структур компонентов, если отсутствует совместимость на надмолекулярном уровне. [c.215]

    Была предпринята попытка описать динамические и оптические, характеристики смесей на основании свойств их компонентов с использованием более простой эквивалентной механической модели. Пусть бинарная смесь состоит из доменов полимера 2, диспергированных в полимере 1. Связь между доменами осуществляется по последовательно-параллельному механизму.. Простой анализ изменения фотоупругих постоянных при смешении указывает, что модель должна учитывать параллельное йключение элементов, особенно при равных объемных долях смешивающихся компонентов. Такая система скорее напоминает переплетающуюся сетку двух фаз, чем дисперсию одной фазы в другой. [c.91]

    Если на оси ординат откладывать какое-либо свойство выходящего потока газа или жидкости, зависящее от его состава, а на оси абсцисс — время или количество прошедшего через колонку потока, то получим график нроявительного анализа — хроматограмму. На рис. 11,6 представлена элюентная кривая для трех компонентов анализируемой смеси. В некоторый момент времени в колонку вводят анализируемую смесь. Затем колонку непрерывно промывают растворителем Е. [c.20]

    Азеотропные области фенола и его производных значительно больше азеотроиных областей соединений с основными свойствами. Зти сведения в значительной степени облегчают решение рассматриваемой задачи. Некоторые эффективные методы исследования полиазеотропных смесей можно использовать только для исследования смесей, содержащих органические кислоты и основания. Сущность этих методов заключается в удалении всех кислот или всех оснований и в добавлении к оставшейся смеси известного количества подходящего кислого или основного компонента. Затем полученную смесь подвергают ректификации, так же как и исходную смесь до изменения ее состава. После проведения обеих разгонок анализируют собранные фракции. На основе полученных данных строят диаграммы для двух кривых разгонки и нескольких кривых, полученных на основе результатов анализа фракций. Эффективность описанного метода показана Лисицким и Сосновской [98, 122, 123]. Некоторые характерные случаи изображены на рис. 91—94. [c.136]

    Во многих случаях разделение может быть осуществлено за счет различия в скорости движения различных компонентов смеси. Разделить смесь, компоненты которой различаются по физическим свойствам, можно путем приложения соответствующих сил, таких, как давление, электрический потенциал, магнитное поле, гравитационное поле, центробежная сила, или сил, вызванных градиентом температуры. Эффективность разделения физическими методами часто зависит от степени различий в физических свойствах разделяемых веществ (растворимости — при разделении смеси песка и хлорида натрия, летучести, размера молекул, способности диффундировать, полярности молекул, ионной подвижности и т. д.). На этом принципе основано большое число инструментальных методов анализа, таких, как газовая хроматография, диализ (как, например, в химическом анализаторе Te hni on SMA , о котором упоминалось в гл. 1), электрофорез, ультрацентрифугирование и др. [c.58]


Смотреть страницы где упоминается термин Анализ свойств компонентов и смесей: [c.68]    [c.13]    [c.372]    [c.73]    [c.196]    [c.206]    [c.109]    [c.157]    [c.150]    [c.416]   
Смотреть главы в:

Основы конструирования и проектирования промышленных аппаратов -> Анализ свойств компонентов и смесей




ПОИСК





Смотрите так же термины и статьи:

Компонент смеси

Смеси компонентов, анализ

Смеси компоненты



© 2025 chem21.info Реклама на сайте