Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий фтористый растворители

    Реакция проводится в присутствии активированного угля при 350—400 °С или в жидкой фазе под давлением в различных органических растворителях с использованием в качестве катализатора безводного хлористого алюминия, фтористого бора, хлористого водорода и др. Принципиальная технологическая схема производства цианурхлорида приведена на рис. 20 [138]. [c.675]


    Реакция проводится в присутствии активированного угля при 350— 400 С или в жидкой фазе под давлением в различных органических растворителях с использованием в качестве катализатора безводного хлористого алюминия, фтористого бора, хлористого водорода и др. [c.467]

    Предполагается, что образующийся комплекс, например из галоидоводорода и хлористого алюминия, фтористого бора и т. д., является сравнительно сильной кислотой, способной даже в органических растворителях ионизироваться, с образованием свободного положительно заряженного атома водорода — протона, согласно схеме  [c.16]

    На рис. 24 приведена схема электролизной ванны для получения алюминия с непрерывными самообжигающимися анодами, с верхним (а) и боковыми (б) токоподводами. Алюминий выплавляют нз глинозема электролизом расплавленных солей. Растворителем глинозема служит криолит (фтористо-алюминиевая соль), который способствует снижению температуры плавления окиси алюминия с 2000 до 1000 °С и ниже, тем самым снижая температуру процесса электролиза до приемлемых значений. [c.96]

    Применяемые для этой реакции катализаторы, в основном галогениды металлов, весьма разнообразны. Наиболее часто используются, по-видимому, хлориды алюминия, олова(1У), титана(1У) и цинка. Находят применение также катализаторы других типов п-толуолсульфокислота, фтористый водород, трехфтористый бор и в особенности полифосфорная кислота в некоторых случаях реакцию проводят в отсутствие катализатора. В этих случаях применяют облучение в полярных растворителях, например в метиловом спирте такая реакция называется фотореакцией Фриса. Так, при облучении фенилового эфира салициловой кислоты получают 28% 2,2 - и 32% 2,4 -диоксибензофенона [27]. Термическую реакцию обычно проводят, нагревая смесь сложного эфира и катализатора до 80—180 °С или (используя какой-нибудь растворитель) при более низкой температуре. В качестве растворителей применяют нитробензол, тетра- хлорэтан, сероуглерод или хлорбензол. [c.127]

    В предыдущем примере реакционная смесь была гетерогенной, так как хлористый алюминий заметно не растворим в насыщенных углеводородах. Гомогенная жидкофазная изомеризация о- и -ге-ксилолов была осуществлена в виде двух серий опытов при различных условиях. В одной серии применялся большой избыток безводной фтористоводородной кислоты в качестве растворителя, а также более чем достаточное для образования растворимого комплекса с кислотами количество фтористого бора. Изомеризация о- и га-ксилолов в ж-ксилол также протекала по первому порядку 160]. [c.117]


    Бутилкаучук является сополимером изобутилена с небольшим (2 или 3%) количеством изопрена. Изопрен (2-метилбутадиен-1,3) может быть получен парофазным крекингом нефтяных фракций при температуре около 700° С. Продукт крекинга может содержать около 20% изопрена вместе с другими диолефинами, пипериленом (пентадиеном-1,3) и циклопентадиеном, от которых изопрен легко отделяется ректификацией. Сонолимеризация проводится при очень низких температурах сырье охлаждается примерно до —90° С и непрерывно подается в реактор одновременно в реактор вводится раствор катализатора Фриделя — Крафтса (фтористый бор или хлористый алюминий). При реакции выделяется большое количество тепла, которое отводится испарением жидкого этилена, циркулирующего через змеевики холодильников таким образом, чтобы в реакторе сохранялась температура —90° С. Каучук образуется в виде диспергированных в реакционной среде частиц. Отделение растворителей и непрореагировавших углеводородов осуществляется промыванием большим количеством горячей воды. После добавления антиоксидантов и стеарата цинка и обработки под вакуумом для полного удаления летучих примесей коагулят сушится, измельчается и упаковывается. [c.117]

    Боргидрид лития легко растворим в диэтиловом эфире, тетрагидрофуране, а также в других эфирах. Поэтому его можно использовать в самых разнообразных растворителях и с самыми различными кислотами. Например, в этиловом эфире по существу количественное гидроборирование октена-1 достигается в присутствии следующих кислот эфиратов трехфтористого и треххлористого бора, треххлористого алюминия, четыреххлористого титана, хлористого водорода и серной кислоты. Вследствие доступности и легкости обращения, по-видимому, наиболее часто используемыми в этиловом эфире (ЭЭ) являются эфират трехфтористого бора, хлористый водород и серная кислота. Следует отметить, что в случае боргидрида лития нужно лишь такое количество трехфтористого бора, которое тре-буе,тся для превращения лития во фтористый литий, тогда как в случае боргидрида натрия трехфтористый бор следует брать в количестве, необходимом для образования фторбората натрия. [c.188]

    Для получения полимеров из некоторых а-замещенных олефинов могут быть использованы анионные или катионные катализаторы. Типичными анионными катализаторами являются сильные основания, такие, как натрийнафталин или амид натрия, а типичными катализаторами катионной полимеризации — кислоты Льюиса, например хлористый алюминий и фтористый бор. Ионная полимеризация протекает очень быстро, и обычно ее проводят при пониженной температуре в низкокипящем растворителе, что облегчает отвод теплоты реакции. [c.240]

    Состав растворителя, вес. Растворимость фтористого алюминия, вес. "/ t Состав твердой фазы [c.282]

    Состав растворителя, вес. Растворимость фтористого алюминия, вес. о  [c.283]

    Хлористый алюминий взаимодействует с диалкилалюминийгидридами, образуя с хорошим выходом гидрид алюминия Предложено использовать в качестве электролита для гальванического покрытия алюминием, диизобутилалюминийгидрид с фтористым калием или гидрид натрия и триэтилалюминий. Смесь электролитов может быть разбавлена растворителем, который не взаимодействует с компонентами и не содержит воздуха [c.87]

    Для этого способа рекомендуется применение катализаторов, состоящих из соединений двух различных металлов, причем один из этих металлов должен принадлежать к II или III группе периодической системы (А1,) а другой—к I, II или III группе (Li, Na, К, Са, Mg). Например, рекомендуются Mg—Al-изопропилат, Са—А1-изопропилат или комплексное соединение из триэтил-алюминия и фтористого натрия. Полимеризация окиси этилена или окиси пропилена осуществляется с катализаторами этого вида в присутствии таких растворителей, как бензол, толуол или дихлорэтан лри 20—300° и нормальном или повышенном (до 50 атм) давлении. Остатки катализаторов удаляются осаждением гидроокисей металлов из растворов полимеров в органическом растворителе или путем экстракции водными растворами кислот. [c.39]

    Тот факт, что только сильные кислоты могут быть причиной гетеролитического распада гидроперекиси изопропилбензола, авторы доказывают следующим образом. Хлористый водород, растворенный в уксусной кислоте, не является сильной кислотой и в этом случае не пригоден для разложения гидроперекиси, тогда как в других условиях следы хлористого водорода вызывают бурный ее распад на фенол и ацетон. С другой стороны, хлорное железо, которое в спиртовом растворе представляет собой слабую кислоту, в данных условиях не разлагает гидроперекись. В TIO же время раствор хлорного железа в бензоле является сильной кислотой и быстро превращает гидроперекись изопропилбензола в фенол и ацетон. Аналогичные результаты были получены с другими растворителями (диоксан, бензол) и кислотами (растворы фтористого бора, хлористого алюминия, серная кислота). Это указывает на отсутствие специфического влияния растворителя или аниона. [c.124]


    Обратимся теперь к рассмотрению способов получения дейтерированных соединеш1Й, которые возникли в результате изучения в лаборатории изотопных реакций физико-химического Института нм. Л. Я. Карпова реакций водородного обмена с сжиженными газами — жидким дейтероаммиаком, жидким бромистым и фтористым дейтерием, (см. стр. 131—152,217—236 [6—8, 10, 49, 50]). При помощи этих растворителей удается обменять на дейтерий водород в СН-связях многочисленных органических веществ, особенно если воспользоваться катализатором (соответственно амид калия, бромистый алюминий, фтористый бор). Преимуществом этих растворителей является их высокая летучесть, вследствие чего их легко удалять после проведения обменной реакции. [c.381]

    Высокофторированные полимеры, например тефлон или Ке1-Р, характеризуются большой стабильностью и стойкостью к действию растворителей, однако они довольно жестки при комнатной температуре, что ограничивает их практическое применение в качестве эластомеров. Для получения полимеров с гибкими эфирными связями были сделаны попытки приготовить высокофторированные полиэфиры путем полимеризации соответствующих фторированных эпоксидов. Несколько фторированных эпоксидных соединений были заполимеризованы в присутствии различных типов катализаторов, например хлорного железа (гидрата и безводного), хлористого алюминия, фтористого бора (газообразного и эфирата), гидроокиси калия и катализатора Циглера (триэтилалюминий и тетрахлорид титана) [127, 128]. Из многих комбинаций мономера и катализатора только 1,1,1-трифтор-2-оксипропилен в присутствии хлорного железа дает твердый полимер. При других комбинациях моно-мепа и катализатора образуются маслообразные низкомолекулярные полимеры, хотя скорость полимеризации достаточно велика. В табл. 73 приведены результаты полимеризации [c.270]

    Возбудителем полимеризации и кополимеризации изобутилена в растворителях при низких температурах являются хлористый алюминий, фтористый алюминий, фтористый бор и четыреххлористый титан. Для промышленной полимеризации наибольшее. [c.315]

    Катализаторами полимеризации и кополимеризации изобутилена 8 растворителях при низких температурах являются хлористый алюминий, фтористый бор и четыреххлористый титан. Для [c.384]

    Фурилаллиловый спирт полимеризуется очень энергично в присутствии фтористого бора, сернистого газа, хлоридов олова железа и алюминия (32) при полимеризации в присутствии фтористого бора при комнатной температуре или при небольшом нагревании фурилаллиловый спирт чернеет со значительным саморазогреванием и быстро превращается в хрупкую нерастворимую в органических растворителях смолу. Если полимеризацию проводят с эфирным раствором фтористого бора при температуре ниже 0°, то полимеризация идет медленно. Через 6—7 дней получают эластичную массу. При хранении на воздухе масса темнеет, делается твердой, теряет эластичность. [c.210]

    Обратимся теперь к рассмотрению способов получения дейтерированных соединений, которые возникли в результате изучения в нашей. яабо-)1атории реакций водородного обмена ( сжиженными газами — жидким дейтероаммиаком, жидким бромистым и фтористым дейтерием (см. [7, 8]). При помощи этих растворителей уедается обменять на дейтерий водород li связях ( <—Н многочисленнтлх органических веществ, особенно если воспользоваться катализаторами (соответственно амид калия, бромистый алюминий, трехфтористый бор). [c.435]

    Полиизобутилены получаемые при низкой температуре [—15—(—)65°С] в среде углеводородного растворителя с применением в качестве катализатора хлористого алюминия или фтористого бора образуют в зависимости от температуры полимеризации мягкую липкую смолу или твердый эластичный материал. Эти полимеры, как и жидкие маслообразные полиизобути-.лены, весьма устойчивы к действию кислорода, озона, кислот и ряда других химически активных веществ, обладают хорошими диэлектрическими свойствами. Полиизобутилены такого типа находят весьма широкое применение. [c.170]

    Состав и свойства электролита. Температура плавления окиси алюминия очень высока (2050°). Расплавленный криолит является единственным растворителем для окиси алюминия. В диаграмме плавкости системы NaF — AIF3, приведенной на рис. 218, криолит проявляется как резкая дистектика при 25 мол.% AIF3 с темп. пл. 1011°. Эвтектика с фтористым натрием лежит при 646 [c.646]

    Катионы, имеющие структуры о-комплекса. образуются при с.мешивании эквимолекулярных количеств ароматического соединения, хлористого алюминия и хлористого водорода или ароматического соединения, трехфтористого бора и фтористого водорода. Получающиеся вещества окращены, хорошо проводят ток, при электролизе выделяют на катоде органические молестлы, пло.хо расТвбр я1шТТ в "органических растворителях, обладают достаточной устойчивостью и разлагаются только при нагревании. [c.285]

    Пр именение. Соли галлия и гафния используются в качестве катализаторов в органическом синтезе. Хлористый галлий, растворимый в органических растворителях, как катализатор имеет существенное преимущество перед хлористым алюминием. Ниобаты и танталаты калия, натрия и других металлов применяют для изготовления пьезоэлектрических преобразователей, керамических сегнетоконденсаторов и усилителей сигналов изображений в телевизорах. Тантал-калий фтористый используется для производства чистых препаратов тантала, не содержащих ниобия. [c.32]

    Для получения пленок и брусков, обладаюш,их максимальной прочностью к удару, поливинилфторид перерабатывают методом литья под давлением при температуре выше 200°. Пластифицированные полимеры фтористого винила можно перерабатывать методом экструзии. Поливинилиренфторид. Недавно появился новый пластический материал, полученный из винилиденфторида GFa = = СНг. Поливинилиденфторид обладает свойствами термопластичной смолы, и изделия из него можно изготовлять на обычном оборудовании. Полимер плавится при более низкой температуре, чем фторопласт-4 и фторопласт-3 в течение длительного времени он устойчив при 150° и около 16 час.— при 260°. Скорость термического разложения нри температуре выше 250° увеличивается в присутствии двуокиси кремния. Медь, алюминий и железо не оказывают каталитического действия на деструкцию полимера. По сравнению с фторопластом-3 поливинилиденфторид химически менее устойчив он разлагается ды-мяш,ей серной кислотой и бутиламином, растворяется в полярных растворителях —диметилсульфоксиде, ди-метилацетамиде. Поливинилиденфторид устойчив к действию ультрафиолетовых лучей и обладает атмосфероустойчив остью. [c.126]

    К, с. получают сополимеризацией смолообразующих веществ — кумарона, индена, стирола и их гомологов, содержащихся во фракциях сырого бензола и каменноугольной смолы, а также в соответствующих фракциях, получаемых при ароматизации нефтепродуктов, Для получения К, с, соответствующие фракции, содержащие смолообразующие в-ва, подвергают полимеризации при 30—120° в присутствии катализаторов (серная к-та, хлористый алюминий, хлорное железо, фтористый бор или его комплексы) или инициирующих веществ (напр,, перекись бензоила). Полимериаат отделяют от катализатора, иногда стабилизируют гидрированием под вакуумом от него отгоняют растворитель а ниакоыолекулярные комповен- [c.444]

    Следующий метод получения оксиарилсульфонов аналогичен реакции Фриза и заключается в нагревании эфиров сульфокислот с хлористым алюминием до 150° в нитробензоле, или в отсутствие растворителя [150], или в растворе сероуглерода при температуре его кипения [151]. Нагревание эфиров тг-толилбензолсуль-фокислоты с фтористым водородом [151] также приводит к перегруппировке, хотя выход оксисульфона при этом составляет только 10%. [c.135]

    Нужно было найти растворитель для окиси алюминия — основного алюминиевого сырья. И через шесть месяцев Холл установил, что окисел хорошо растворим в расплаве фтористого алюмината натрия (NaзAlF6). [c.220]

    Можно вести процесс с сесквихлоридом, не выделяя первую стадию в самостоятельную, однако в этом случае на единицу образующегося триалкилалюминия приходится большое количество твердой соли, что приводит к образованию густой, трудно перемешиваемой реакционной массы. Для того чтобы реакционная масса не затвердевала и оставалась легко подвижной, целесообразно вести реакцию в среде растворителя. Желательно выбирать растворители, значительно отличающиеся по температуре кипения от получаемых алюминийтриалкилов. Например, для триэтилалюминия, кипящего при 196°, следует применять растворители, кипящие при температуре не выше 150° или не ниже 250°. С низкокипящими растворителями приходится работать под давлением. Следует избегать избытка фтористого натрия, который дает с алюминийтриалкилами прочные комплексные соединения. Для связывания избытка фтористого натрия рекомендуется добавлять фтористый алюминий, образующий с фтористым натрием криолит. Разложение комплексного соединения—натрий-алюминийдиалкилдифторида идет уже при 150—250°. Удобнее вести процесс при более высокой температуре с таким расчетом, чтобы образующиеся алюминийтриалкилы находились в реакционной зоне возможно более короткое время, во избежание термического разложения [ПО]. Для этого рекомендуют откачивать образующиеся пары алюминийтриалкилов при помощи мощных вакуум-насосов. Чем длиннее цепь алкильного радикала в триалкил-алюминии, тем более глубокий вакуум необходим. Получение триметилалюминия по этому способу можно вести при 270—300° и остаточном давлении 10—20 мм. Высшие алюминийтриалкилы получают при 230—250° и давлении 1 мм. Вместо отгонки в вакууме может применяться отгонка в токе перегретых паров инертного растворителя, например пентана или бензола. [c.272]

    Раствор фтористого диметилалюминия в ксилоле нагревают со фтористым натрием в вибрационной мельнице, соединенной с обратным холодильником. Компоненты берут точно в требуемых по реакции количествах. Время от времени отбирают пробы образующейся густой суспензии и проверяют реакцию отфильтрованной жидкости с водой. Когда очередная проба не будет давать с водой осадка гидроокиси алюминия, начинают центрифугировать. Отгоняют остатки растворителя от осадка на масляной бане при 130° и под конец при 160°. [c.296]

    Тонкие листы можно сваривать с отбортовкой без присадочного металла. При сварке толстых листов для обеспечения провара производится скос кромок и применяется присадочный пруток. Кромки изделия перед сваркой должны быть обезжирены растворителем и очищены от слоя окиси химическим или механическим способом. Для закрепления кромок, особенно ири сварке труб, часто применяют предварительную прихватку. Сварку листового металла и толстых листов следует производить с предварительным подогревом (до 150—250° С). Пламя должно быть нормальным или с небольпшм избытком ацетилена. В качестве присадочного металла можно примеиять чистый алюминий или его сплавы, содержащие 4,5—6% кремния флюс — хлориды щелочных металлов — и некоторые фтористые соединения. Остатки флюса после сварки необходимо удалять, так как опи вызывают коррозию металла для этого шов тщательно обрабатывают кислотой (например, 5% НКОд в течепие 10 мин при 60—80° С) и затем промывают в воде. Для улз чшения механических свойств и структуры металла шва его целесообразно подвергнуть после сварки отжигу горелкой и проковке. [c.594]

    Окись тетраметилэтилена,- т. е. полностью замещенная окись этилена, легко полимеризуется трехфтористым бором [121, 125]. Так, даже при температуре порядка —100° мономер в присутствии около 15 вес.% эфирата фтористого бора отверждается в течение 5 мин [136]. Триэтилалюминий и бинарная смесь изопропилата алюминия и хлористого цинка в этом случае оказывается неактивной [121]. Политетраметилэтиленоксид характеризуется высокой температурой размягчения и большой стойкостью к органическим растворителям. Он не плавится при нагревании до 300°, на воздухе лишь слегка изменяет цвет и устойчив к действию обычных органических растворителей, даже при их температуре кипения.  [c.272]

    Наряду с катализаторами Фриделя — Крафтса, обычно применяемыми для полимеризации 3, 3-быс(хлорметил)-оксациклобутана, недавно предложено несколько других катализаторов, которые можно рассматривать как анионные. К ним относятся алкоголят алюминия [21], триалкилалюминий [22—24], алюми-нийгидрид и амальгама алюминия [25]. Эти катализаторы также требуют более высоких по сравнению с фтористым бором температур реакции (150—200°, вместо — 50° — комнатной). Влияние температуры на ход полимеризации в присутствии триэтилалюминия показно в табл. 77 . Согласно данным ряда патентов [21—23, 25], полимеризацию на щелочных катализаторах проводят в отсутствие растворителей. При использовании чрезвычайно малых концентраций катализатора, обычно в количестве менее 0,35% мономера, достигается высокая степень конверсии и сводится к минимуму необходимость очистки продукта. [c.306]

    Позднее было установлено, что кроме ацетона реагируют с фенолом с образованием 4,4 -диоксидифенилалканов и другие кетоны и альдегиды. Было найдено, что наилучшие выходы получаются при мольном соотношении ацетон фенол, равном 1 3,7 [399]. При применении серной кислоты в качестве катализатора ее концентрация в растворе не должна превышать 75%, чтобы предотвратить образование водорастворимого сульфированного продукта. Температура реакции не должна превышать 80°С [399, 400]. Кроме того, в качестве катализаторов реакции применяют хлористый, бромистый и фтористый водород, фосген [401], фтористый бор, хлористый алюминий, галоидные соединения фосфора, фосфорный ангидрид, фосфорную кислоту, концентрированную соляную кислоту, серную кислоту, смеси уксусной кислоты с уксусным ангидридом, соляной или серной кислотой и катионообменные смолы. В присутствии кислых катализаторов, которые не являются одновременно дегидратирующими веществами, высокий выход продуктов достигается лишь в том случае, если воду удаляют какими-либо другими способами, например, азеотропной перегонкой с растворителями или взаимодействием с хлористым кальцием или фосфорным ангидридом. [c.128]

    Интересным способом получения цианурхлорида является полимеризация хлористого циана в жидкой фазе под давлением с применением различных органических растворителей и использованием ь качестве катализатора безводного хлористого алюминия [93, 95, 105], фтористого бора [102—104] или хлористого водорода [101]. В качестве раствО рителей рекомендованы хлороформ, четыреххлористый углерод и метиловый эфир [94]. Полимеризация хлористого циана в этих условиях, по патентным данным, протекает при температуре 20—60 °С, выход цианурхлорида обычно составляет 90—97% от теоретического. Особенно высок выход цианурхлорида при проведении процесса полимеризации в присутствии хлористого водорода и метилового эфира [94, ПО, 111]. [c.643]


Смотреть страницы где упоминается термин Алюминий фтористый растворители: [c.286]    [c.431]    [c.20]    [c.38]    [c.74]    [c.653]    [c.657]    [c.658]    [c.211]    [c.472]    [c.27]    [c.80]    [c.657]    [c.26]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий фтористый



© 2024 chem21.info Реклама на сайте