Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНФ-производные масс-спектрометрия

    Из газойлевой фракции 230—235 °С выделены моно- и бицик-лическая ареновая часть. Моноциклическая ареновая фракция разделялась на молекулярных ситах типа 10Х. Анализ методами масс-спектрометрии, ЯМР и ИК-спектроскопии показал, что алкилбензолы, адсорбированные на молекулярных ситах, представляют в основном дизамещенные производные, имеющие одну метильную и одну длинную (6—8 атомов углерода) алкильную цепь [83]. Алкильный заместитель в /з молекул в конце цепи имеет метильное ответвление  [c.224]


    Интересна структура азотсодержащих соединений продуктов гидрокрекинга гудрона высокосернистой арланской нефти [202]. Для анализа использовали газожидкостную хроматографию, ИК-и УФ-спектроскопию и масс-спектрометрию. Концентрат азотсодержащих соединений имел молекулярную массу 79—149, содер-"Жал 13,6 % азота в виде производных пиридина и анилина. [c.255]

    Термические свойства моно- и биметаллических производных исследованы методом ДТЛ-ТГА, тензиметрии, хромато-масс-спектрометрии газообразных продуктов разложения, химического анализа и РФА конденсированных продуктов разложения. [c.81]

    В ходе работы синтезировано более 60 неописанных ранее гетероциклических соединений, структуры которых однозначно установлены ПМР-, ИК-, УФ- спектроскопией, масс-спектрометрией. Для всех вновь полученных соединений разработаны лабораторные методики, для ключевых, базовых производных разрабатывается научно-техническая документация (ТУ). [c.24]

    Теперь посмотрим, как устанавливают структуру и конфигурации моносахаридов и их метилированных производных в современных работах. Здесь решающую роль играют два метода — осколочная масс-спектрометрия для установления структур (без стереохимии) и спектроскопия ядерного магнитного резонанса (ЯМР) для выяснения конфигураций асимметрических центров. [c.66]

    Итак, имеется моносахарид или его метилированное производное. Установить строение — значит решить две группы задач. Прежде всего надо выяснить длину углеродной цепи, природу, число и расположение функциональных групп для метилированных сахаров, в частности,— число и положение метильных групп. Все это в совокупности иногда называют бутлеровской структурой. Затем нужно установить конфигурацию асимметрических центров, т. е. решить задачу того же типа, которую решал Эмиль Фишер для глюкозы, маннозы и арабинозы. В этой главе мы рассмотрим пути решения задач первой группы одним наиболее общим и употребительным в современной науке методом — с помощью осколочной масс-спектрометрии. [c.66]

    Теперь, наконец, можно уже конкретно перейти к масс-спектрометрии моносахаридов. Непосредственно исследовать их этим методом затруднительно. Дело в том, что молекулы моносахаридов содержат много полярных групп, а это самым неблагоприятным образом сказывается на их летучести. Выход из положения состоит в получении подходящих более летучих производных. На их выбор накладывается целый ряд ограничений, но к настоящему времени эта трудность уже преодолена найдено несколько классов производных, отвечающих всем требованиям, и подробно изучены закономерности их фрагментации. Чаще всего для этой цели сейчас используются ацетаты полиолов. Их получают с помощью двух весьма общих и чрезвычайно простых в экспериментальном оформлении реакций восстановления моносахарида боргидридом натрия и последующего ацетилирования. Ниже эти реакции показаны на примере D-галактозы (с. 71). [c.70]


    Мы не сказали и о том, что углеводы — соединения совершенно нелетучие — можно изучать методом масс-спектрометрии, если их предварительно превратить в летучие производные, такие, как триметилсилильные эфиры. [c.529]

    Мы не сказали о том, что аминокислоты и небольшие пептиды можно изучать с помощью масс-спектрометрии, если их предварительно превратить в летучие производные. [c.529]

    Хроматограмма смеси некоторых микотоксинов (без получения производных) представлена на рис. 3-36. Микотоксины содержаться в смеси в нанограммовых количествах. Полученные данные об отсутствии изменения состава пробы подтверждены методом хромато-масс-спектрометрии, что говорит о его совместимости с "методом газовой хроматографии. Парис. 3-37 приведена хроматограмма смеси силилированных ароматических оксикислот. Пробы вводили непосредственно в колонку, поскольку производные триметилсилана малоустойчивы. [c.55]

    Основная доля серосодержащих соединений нефти приходится на так называемую остаточную серу, не определяемую стандартными методами. В ее составе преобладают тиофены и их производные, поэтому раньше остаточную серу называли тиофеновой , однако с помощью масс-спектрометрии отрицательных ионов в ней обнаружены сульфоксиды, сульфоны и дисульфан. В бензиновых фракциях содержание производных тиофена мало, в средних и особенно высококипящих фракциях оно достигает 50-80%) от суммы серосодержащих соединений. Относительное содержание тиофеновых производных, как правило, совпадает со степенью ароматичности нефтяной системы. [c.72]

    В настоящее время озонолиз является, пожалуй, более быстрым, более эффективным и более простым методом определения положения двойных связей в молекуле, чем комбинация методов окисления, превращения в производные, ГХ и масс-спектрометрии. [c.223]

    Из-за насыщенного характера алканов их идентификация с помощью производных невозможна, в противоположность большинству других классов органических соединений. Поэтому для характеристики алканов привлекаются физические константы и спектральные данные. Чаще всего для такой идентификации используют комбинацию газовой хроматографии с масс-спектрометрией и ИК-снектроскопией. [c.203]

    Пособие содержит краткое описание масс-спектрометра, условий ионизации веществ, типов ионов в масс-спектре. На большом числе примеров масс-спектров природных веществ, металлоорганических соединений и других веществ (растворителей, реагентов, лекарственных препаратов) подробно анализируются типы распада молекулярных и осколочных ионов. В книге рассмотрены требования к анализируемым веществам — их летучести, стабильности и т. д., приводятся химические и термические реакции, происходящие в приборе до ионизации, а также синтезы удобных для анализа производных даются практические советы по расшифровке масс-спектра. [c.375]

    Как показано многочисленными исследованиями, убедительную идентификацию производных пептидов можно провести с помощью масс-спектрометрии [34, 85, 123]. Комбинация этих двух методов может значительно облегчить анализ последовательности пептидов — к тому же для обоих методов требуются очень малые количества вещества. Газовая хроматография пептидов изучалась только в двух лабораториях, в которых были предложены различные методики получения их производных. Для последующей идентификации крайне важно, чтобы структуру исходных соединений можно было узнавать по их производным. Хотя детальное рассмотрение масс-спектрометрии выходит за рамки рассматриваемого ниже процесса ГХ пептидов, многие операции, которые будут описаны, должны рассматриваться с учетом возможного использования масс-спектрометрического метода. Соединение капиллярной или набивной колонки непосредственно с масс-спектрометром дает возможность измерять полный масс-спектр каждого пика и, таким образом, с помощью этого способа получать необходимую информацию. [c.339]

    Неудовлетворительное разделение, однако, пытаются компенсировать с помощью масс-спектрометрии. Было показано, что на масс-спектрометре полностью идентифицируются смеси простых пептидов [123], причем наложение пиков ни в коей мере не исключает идентификации пептидных производных. [c.343]

    Если учесть, что дибораны изоэлектронны с СгН — этилкарбоний-ионом, а замещенные дибораны изоэлектричны с соответствующими замещенными производными этилкарбоний-исза, то это обстоятельство, казалось бы, является довольно веским доводом в пользу мостиковой структуры иона карбония. Кроме того, этот факт дает вполне реальное объяснение перегруппировок, которым подвергаются ионы карбония, полученные в масс-спектрометре [18]. [c.477]

    Имеются нефти, в средних дистиллятах которых содержатся производные тиофенов, но практически отсутствуют сульфиды и меркаптаны. Содержание серы во фракциях усинской нефти н. к. — 200°С 0,20%, 200—360°С 0,93% и 360—410°С 1,20% вся общая сера представлена тиофенами [192]. По данным масс-спектрометрии и спектрального анализа, 83 % серусодержащих соединений являются алкил- и циклоалкилпроизводными бензо- и дибензотио-фена, во фракциях содержались и полиареновые серусодержащие соединения. [c.251]


    Метод масс-спектрометрии. Методом масс-спектрометрии исследованы первые и вторые сульфиды фракции 170—310° С ар-ттанской нефти —сырые, очищенные фракционной реэкстракцией водной серной кислотой (последовательно полученные первая и вторая фракции), и смесь первых и вторых сульфидов в пропорциональных количествах, очищенная методом разделительной хроматографии (головная, основная и хвостовая фракции). При исследованиях была применена методика масс-спектрометрического анализа, разработанная для нефтепродуктов с высоким содержанием сернистых соединений [29]. Она позволяла определить в смеси содержание диалкилсульфидов, моно-, би- и тритиацикланов, алкил-циклоалкилсульфидов, производных тиофена (в том числе бензтиофена), примесь углеводородов. [c.171]

    При использовании масс-спектрометра с высокой разрешающей силой исследовались спектры ряда бортриалкилов с общей формулой ВНз, где К — метил, этил, пропил и изопропил [219]. Были идентифицированы осколочные ионы, содержащие и не содержащие бор изучались также масс-спектры дейтерированных бортриалкилов. Все это позволило установить механизм распада исследуемых молекул под действием электронного удара. На основании полученных данных были установлены закономерности, позволившие проводить идентификацию неизвестных бортриалкилов без предварительного изучения эталонов. Аналогичные исследования проводились с циклогексанонамн, меченными дейтерием и О [220] и изопропилиденовыми производными глюкозы, галактозы и других углеводов, меченных С и О [221]. [c.126]

    Таким образом убеждаемся в том, что, во-первых, происхождение важнейших пиков в масс-спектре объясняется без противоречий, и, во-вторых, был получен спектр действительно этого соединения. Однако м- и о-хлоранилины дают очень близкие спектры, поэтому различить эти изомеры методом масс-спектрометрии практически невозможно. Более того, сходные масс-спектры можно ожидать также и для производных пиридина с такой же брутто-формулой. Этот пример иллюстрирует возможности масс-спектромет-рического структурного анализа, но одновременно свидетельствует и о том, что подобные задачи следует решать, только сочетая масс-спектрометрию с другими спектроскопическими методами — особенно с ЯМР-спектроскопией. [c.296]

    Регулируемая селективность масс-спектрометра как хроматографического детектора означает следующее параллельно с хроматограммой анализируемого образца по полному ионному току могут быть записаны одна или несколько хроматограмм по заранее выбранным значениям miz (так. называемые масс-фрагменто-граммы) . Следует подчеркнуть, что предел обнаружения в этом методе примерно в 100 раз меньше, чем по полному ионному току, что обусловлено снижением уровня шумов. Такой прием дает возможность даже в сложных смесях легко обнаруживать присутствие веществ, дающих в масс-спектрах сигналы с характеристичными массовыми числами, и широко применяется при анализе следов галогенсодержащих соединений в воздухе (на фоне относительно большого количества углеводородов), аминокислот в виде их летучих производных, метаболитов лекарственных препаратов и т. д. Для повышения чувствительности масс-фрагментограммы, как правило, записывают по массовым числам максимальных сигналов в спектрах анализируемых веществ. [c.201]

    В последние годы в хромато-масс-спектрометрии ш poкo применяются кварцевые капиллярные колонки с привитыми силиконовыми неподвижными фазами. Их использование позволяет анализировать крайне труднолетучие и термически нестабильные соединения, например дипептиды (после получения производных по амино- и карбоксильным группам), олигосахариды (также после соответствующей дериватизации), токсичные полихлорированные ароматические углеводороды и т. д. Кроме того, подобные фазы устойчивы к действию больших количеств (до 500 мкл) агрессивных растворителей, в том числе воды, что существенно расширяет возможности хромато-масс-спектрометрии при анализе следов органических соединений. [c.206]

    Масс-спектрометрия производных гомоадамантана проведена кафедрой совместно с группой сотрудников Института органической химии АН СССР (Москва). В результате этого исследования было установлено, что производные гомоадамантана по их поведению под электронным ударом можно разделить на две группы. К первой группе относятся соединения с электроноакцепторными заместителями. Для этой группы характерно отщепление заместителя от молекулярного иона и образование углеводородного фрагмента. При этом 3-производные гомоадамантана претерпевают термическую перегруппировку типа перегруппировки Вагнера-Мейервейна, превращаясь в производные адамантана, а после отщепления боковой цепи—в адамантил-1-ка- [c.158]

    Кол-во компонента в хроматографич. зоне определяют непосредственно на слое сорбента по площади зоны (обычно ее диаметр варьирует от 3 до 10 мм) или интенсивности ее окраски (флуоресценции). Используют также автоматич. сканирующие приборы, измеряющие поглощение, пропускание или отражение свега, либо радиоактивность хроматографич. зон. Разделенные зоны можно соскоблить с пластинки вместе со слоем сорбента, экстрагировать компонент в р-ритель и анализировать р-р подходя1цим методом (спектрофотометрия, люминесцентный, атомно-абсорбци-онный, атомно-флуоресцентный, радиометрич. анализ, масс-спектрометрия и т.д.). Погрешность количественного определения обычно составляет 5-10% гтределы обнаружения в-в в зонах-10 -10 мкг (по окрашенным производным) и 10" °-10 мкг (с применением люминесцентного анализа). [c.609]

    При анализе последовательности особенно удачна комбинация методов масс-спектрометрии и газовой хроматографии [137 — 140]. Сложные олигопептидные смеси, образующиеся при частичном гидролизе, после превращения в летучие производные разделяют на газовом хроматографе и идентифицируют с помощью Ma q- neKTpoM Tpa. Установление последовательности осуществляют с помощью ЭВМ, основываясь на данных идентификации всех олигопептидов. Серин, тирозин и триптофан не вносят каких-либо трудностей.  [c.374]

    Если сахар содержит вместо гидроксильных групп другие функции и относится к классу аминосахаров, дезоксисахаров и т. д. то при помощи метода масс-спектрометрии можно определить место этого заместителя и, следовательно, строение сахара. Так, например, при распаде метилового эфира N-aцeтильнoгo производного гликозамина появляется ряд ионов т/е 172, 168, 98), которые могут возникнуть только при распаде сахара с N-aцeтильнoй группой в положении 2. [c.594]

    Большинство количественных масс-спектрометрических анализов выполняется с помощью газохроматографического ввода летучих веществ. Возможности системы газовый хроматограф - масс-спектрометр ограничены исследованием соединений, которые могут быть переведены в паровую фазу без разложения (либо непосредственно анализируемые соединения, либо их производные). Совмещение масс-спектрометрической системы с газовым хроматографом обеспечивает однозначную идентификацию неизвестных соединений и гарантирует точный, воспроизводимый количественный анализ (пример - хромато-масс-спектрометр G Q фирмы Finnigan [9], появившийся в 1995 году). [c.127]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    J,eтyчиx производных используют хромато-масс-спектрометрию-[26,27] (см. разд. 26.3.2.8). Соответствующие данные для известных стандартных частично метилированных соединений приведены [c.219]

    Метод масс-спектрометрии играет большую роль в определении строения полисахаридов. Его используют не только для идентификации производных, полученных при анализе методом метилирования (см. разд. 26.3.2.1), но и для анализа олигосахаридов непосредственно после перевода их в одно из вышеупомянутых летучих производных [23—25, 44—47] (см. разд. 26.3.2.6). Этим методом может быть определена молекулярная масса небольших олигосахаридов, а также последовательность моносахаридных остатков и положение гликозидных связей, хотя для этого обычно необходимы сведения о природе входящих в состав олигосахарида углеводов [48,49]. Прямая масс-спектрометрическая идентификация олигосахаридов, содержащих более четырех моносахаридных остатков, затруднена, однако была изучена фрагментация полностью ацетилированных гликозидов пентасахаридов [50], а сравнительно недавно описан метод определения О-фруктозных звеньев в полностью метилированных олигосахаридах, который дает информацию о соотношении пиранозных и фуранозных форм и положении гликозидных связей [51]. [c.225]

    Метод масс-спектрометрии позволяет решать весьма сложные структурные задачи органической химии, например, такие, как определение последовательности расположения аминокислот в полипептидах, установление строения производных моносахаридов, дисахаридов и олигосахаров. В масс-спектрах производных углеводородов, содержащих атомы Вг (79 и 81), хлора (35 и 37), серы (32 и 34), следует учитывать наличие изотопноразличимых положительно заряженных фрагментов. Частицам, имеющим идентичное строение, но содержащим изотопные атомы, соответствуют близлежащие пики определенной интенсивности. Во многих случаях соотношения пиков изотопов того или иного атома в молекуле помогают легче решить вопрос о ее строении. Представления о структуре получают, анализируя пути фрагментации, т. е. изучая число, интенсивность пиков и природу их возникновения. В табл. 4.1 приведены данные о типичных осколках различных классов соединений и их массовых числах. [c.104]


Смотреть страницы где упоминается термин ДНФ-производные масс-спектрометрия: [c.176]    [c.282]    [c.180]    [c.154]    [c.378]    [c.529]    [c.521]    [c.524]    [c.65]    [c.170]    [c.204]    [c.225]    [c.762]    [c.191]    [c.78]    [c.8]   
Хроматография Практическое приложение метода Часть 1 (1986) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте