Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия осколочные

    Масс-спектрометрия высокого разрешения нашла широкое применение не только для идентификации и изучении структуры отдельных соединений, но и для идентификации типов соединений в сложных смесях и установления распределения этих типов по молекулярным весам. Использование масс-спектрометра при исследовании широких высокомолекулярных нефтяных фракций ограничивается рядом факторов, одним из которых является наложение масс-спектров типов, отличающихся по 2 (в формуле СпНзга+г) ИЗ 14 единиц. Это наложение обусловлено равенством номинальных масс 1С—12Н. Так, например, ион нонана С9Н20 (общая формула С Игп+г) и нафталина СюНа(СпН2п 12) обладают номинальной массой 128, в результате чего их молекулярные пики на приборе с малой разрешающей силой перекрываются. Однако точные значения массовых чисел подобных ионов отличны друг от друга ДМ дублета Н 2—равно 0,0939. Ввиду этого на масс-спектрометре с высоким разрешением указанным выше ионам будут соответствовать 2 пика, что позволит установить присутствие обоих веществ. Естественно, аналогичная картина наблюдается и в осколочных ионах. При переходе к неуглеводородным соединениям расшифровка осложняется из-за наложения масс-спектров, вследствие наличия одного или нескольких гетероатомов. В этом случае установление распределения по молекулярным массам с помощью обычного масс-спектрометра часто невозможно. [c.126]


    В табл. 5.37 и 5.38 приведены краткие данные о небольшом числе характеристических осколочных ионов и разностях масс молекулярного и осколочных ионов. Более подробные таблицы имеются в учебниках по масс-спектрометрии и в работе Мак-Лафферти [117]. [c.291]

    TOB, входящих в молекулу. Применяя масс-спектрометрию высокого разрешения, массовое число молекулярного иона, равно как н осколочных ионов, можно определить с точностью до [c.57]

    В этой главе будут рассмотрены особенности масс-спектров органических соединений, регистрируемых при ионизации в условиях ЭУ. Этот метод ионизации наиболее распространен. Он позволяет получать масс-спектры с многочисленными пиками осколочных ионов, несущих большой объем информации о структуре соединения. Как отмечалось выше, другие, в основном "мягкие", методы ионизации обеспечивают получение высокостабильных молекулярных или псевдомолекулярных ионов, пики которых, как правило, доминируют в спектрах. В последнее время разработан метод активизации столкновением или масс-спектрометрия/масс-спектрометрия (см. гл. 8), который позволяет разрушать такие стабильные ионы и регистрировать достаточно многолинейные масс-спектры. В конечном счете характер масс-спектров определяется рядом факторов, от которых зависят вероятность образования катионов и катион-радикалов, а также их дальнейший распад на осколочные ионы. [c.88]

    Теперь посмотрим, как устанавливают структуру и конфигурации моносахаридов и их метилированных производных в современных работах. Здесь решающую роль играют два метода — осколочная масс-спектрометрия для установления структур (без стереохимии) и спектроскопия ядерного магнитного резонанса (ЯМР) для выяснения конфигураций асимметрических центров. [c.66]

    Масс-спектрометрия осколочных [c.349]

    С помощью меченых соединений часто изучают механизмы фрагментации молекул органических соединений в условиях масс-спектрометрии. В этом случае по сдвигу массового числа осколочного иона в спектре селективно меченного соединения можно определить состав иона, изучить процессы миграции атомов и групп атомов. Синтез меченых соединений используют также для решения структурно-аналитических задач. Меченые аналоги изучаемого вещества широко применяют в качестве внутренних стандартов при количественных масс-спектрометрических определениях веществ в больших объемах жидкостей, в частности биологических. С помощью масс-спектрометрии определяют содержание конкретного вещества и положение метки в изотопно-меченых аналогах при изучении механизмов органических реакций и путей трансформации биологически активных веществ в живых организмах и культуральных жидкостях. [c.76]


    Таким образом, используя расширенный набор аналитических характеристик можно получить более подробные данные о структуре анализируемой смеси сераорганических соединений методом масс-спектрометрии. На основании распределения интенсивностей пиков молекулярных и осколочных ионов возможно определение степени замещения и распределения по длине цепи для каждого типа соединений в смеси. [c.208]

    В масс-спектрометре органическое соединение (или их смесь) переводится в газообразное состояние, затем подвергается действию электронного (фотонного) удара или сильного электриче-ческого поля, в результате чего удаляется электрон с одной из молекулярных орбиталей и образуется положительно заряженный молекулярный ион. Обладая избыточной энергией, полученной, например, от ударяющего электрона (имеющего, как правило, энергию 50—100.эВ), этот нон распадается на заряженные и нейтральные осколки, первые из которых далее в магнитном (или ином) анализаторе делятся в зависимости от их массы (точнее, в зависимости от отношения массы частицы к ее заряду, последний обычно равен единице) и далее регистрируются. Массовое число, соответствующее исходному (молекулярному) иону и осколочным ионам, является точной и однозначной характеристикой исходной молекулы и ее фрагментов. Образование набора тех или иных осколочных ионов с данной распространенностью (концентрацией) однозначно характеризует структуру исходной молекулы, так что даже очень близкие по структуре соединения (например, изомерные углеводороды) дают свои неповторимые масс-спектры. [c.131]

    Пособие содержит краткое описание масс-спектрометра, условий ионизации веществ, типов ионов в масс-спектре. На большом числе примеров масс-спектров природных веществ, металлоорганических соединений и других веществ (растворителей, реагентов, лекарственных препаратов) подробно анализируются типы распада молекулярных и осколочных ионов. В книге рассмотрены требования к анализируемым веществам — их летучести, стабильности и т. д., приводятся химические и термические реакции, происходящие в приборе до ионизации, а также синтезы удобных для анализа производных даются практические советы по расшифровке масс-спектра. [c.375]

    Процессы образования молекулярных и осколочных ионов могут быть названы первичными процессами протекающими в ионном источнике масс-спектрометра. К их числу следует отнести также образование метастабильных ионов (39, 40], возникающих в том случае, когда процесс диссоциации протекает за время, несколько большее, чем время одного колебания атома в молекуле, равное 10 —Ю " сек. Так, если продолжительность существования образовавшихся ионов составляет 1 мксек, то этого достаточно для вытягивания их из ионного источника и приобретения ими ускорения. Однако такие ионы не успевают пройти магнитный анализатор без разложения и распадаются с отщеплением нейтральных частиц, а в масс-спектре появляются ложные пики. Условием для их обнаружения является повышенная концентрация ионов в какой-либо точке ионного потока. [c.23]

    Точная форма кривой в значительной степени зависит от природы иона. Для молекулярных и осколочных ионов, образующихся при простом механизме ионизации, начальный участок кривой меньше и угол линейного участка больше, чем для ионов, образующихся по сравнительно сложному механизму. Если сравнивать ионы одного типа, то различия в форме их ионизационных кривых невелики. Так ионизационные кривые для молекулярных ионов криптона, аргона, двуокиси углерода, метана, ацетилена, этилена, водорода и воды обычно располагаются параллельно, особенно в области низких энергий [130], если в масс-спектрометр они вводятся [c.175]

    Масс-спектрометрия. При облучении паров органических соединений в глубоком вакууме пучком электронов образуются положительно и отрицательно заряженные частицы — ионы. Самая крупная из образующихся при этом частиц — молекулярный ион — получается в результате потери молекулой одного электрона (положительный молекулярный ион) или в результате присоединения к молекуле одного электрона (отрицательный молекулярный ион). Одновременно под действием электронного удара молекулы исследуемых соединений распадаются на фрагменты, образуя большое число осколочных ионов. Как величина молекулярного иона, так величина и число образующихся осколочных ионов различны для разных соединений, но всегда одинаковы для одного и того же вещества. Таким образом, возникает возможность в специальных приборах — масс-спектрометрах отличать одно органическое соединение от другого и определять содержание отдельных соедине-ний в сложных смесях. [c.129]


    Итак, имеется моносахарид или его метилированное производное. Установить строение — значит решить две группы задач. Прежде всего надо выяснить длину углеродной цепи, природу, число и расположение функциональных групп для метилированных сахаров, в частности,— число и положение метильных групп. Все это в совокупности иногда называют бутлеровской структурой. Затем нужно установить конфигурацию асимметрических центров, т. е. решить задачу того же типа, которую решал Эмиль Фишер для глюкозы, маннозы и арабинозы. В этой главе мы рассмотрим пути решения задач первой группы одним наиболее общим и употребительным в современной науке методом — с помощью осколочной масс-спектрометрии. [c.66]

    При масс-спектрометрическом анализе необходимо, чтобы чувствительность масс-спектрометра была постоянной для любого данного соединения независимо от- присутствия других соединений. Более того, интенсивности всех осколочных ионов при определенном характере распада исследуемого соединения должны нахо- [c.7]

    Этот метод точного определения молекулярного веса не может быть распространен на осколочные ионы, по крайней мере при работе с обычными масс-спектрометрами, поскольку подобные вторичные [c.13]

    УСТАНОВЛЕНИЕ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ МЕТОДОМ ОСКОЛОЧНОЙ МАСС-СПЕКТРОМЕТРИИ [c.589]

    Метод осколочной масс-спектрометрии [c.102]

    Первичным результатом взаимодействия пучка ионизирующих электронов с молекулой, протекающего за 10 —10 с, является ионизация, т. е. удаление электрона с молекулярной орбитали и образование нечетно-электронного ион-радикала М+ . Обычно в масс-спектрометрии ионизация осуществляется при энергии электронов 70 эВ. Образующиеся в этих условиях М+ имеют различную избыточную энергию и находятся в различных электронно- и колебательно-возбужденных состояниях. Если избыток внутренней энергии в М+ достаточен для разрыва межатомных связей, происходит его распад с образованием осколочных ионов и нейтральных частиц. [c.10]

    При анализе насыщенной части нефтяных фракций с помощью масс спектрометрии с ЭУ ионизацией обычно встречаются трудности в определении молекулярно массового распределения ГХ—МС с полевой ионизацией позволяет осуществить это определение, а кроме того, получить дополнительную информацию для идентификации изомерных соединений В отличие от ароматических соединений, у которых фрагментация незначительна, алканы дают сравнительно много осколочных ионов Интен- [c.168]

    Масс-спектрометр с ионизацией ЭУ особенно подходит для анализа органических соединений в органическом синтезе, нефтехимии, медицине, биологии, а также при анализе загрязнений окружающей среды [13, 40], т.к. дает возможность получить общую характеристику неизвестного соединения по масс-спектру, содержащему пики как молекулярных, так и осколочных ионов. Следует отметить, что основной материал по масс-спектрометрии органических соединений разных классов, накопленный и представленный в каталогах, — это,, главным образом, масс-спектры, полу ченные при анализе ЭУ. Поэтому автоматические системы обработки результатов масс-спектрометрических измерений, использующие библиотечный поиск, ориентируются именно на эти данные [81-87]. [c.847]

    По данным [496 ] средняя молекула алкилтиофенов из фракции 150—250°С арланской нефти содержит одну сравнительно, длинную (Сз—Ся), одну более короткую (С,—Сз) цепи и 1—2 метильные группы. По результатам оптической и масс-спектрометрии и гидродесульфурирования сделан вывод о том, что среди этих алкил-тиофенов нет монозамещенных, что лишь около 10 % их имеют заместители в а-положении к атому серы и что в их алифатических цепях нет гем-диметильных и изопропильных групп [467, 472]. До 40% тиофенов в этой фракции составляли СС с 2 = 6, которые, по данным осколочной масс-спектрометрии, являлись скорее цик-поалкил, чем циклоалканотиофенами [496]. [c.67]

    Для более детального изучения структурных особенностей ва-падилиорфиринов, входящих в состав фракций, использовали осколочную масс-спектрометрию (70 эВ) [832, 842] и масс-спектро-метрию метастабильных ионов [843]. Особенностью масс-спектро-метрического поведения алкилпорфиринов обусловлено применение для анализа смесей нефтяных порфиринов [842] методики, основанной на выделении группового масс-спектра [847]. Это позволило высказать предположение о наличии у высокомолекулярных Гомологов нефтяных порфиринов длинных алкильных цепей, по крайней мере до 11 —12 атомов углерода. Такое предположение подтверждено на основании анализа масс-сиектров метастабильных ионов (метод DADJ) [848] и метода дефокусировки [849—851] ванадилпорфиринов нефтей и их фракций [819, 842, 843]. В этих л е работах показана принципиальная воз.можность присутствия открытых пиррольных положений не только у гомологов с низкой молекулярной массой, но также и у гомологов, имеющих более 8 метиленовых групп в алкильных заместителях порфинного цикла.  [c.156]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    При использовании масс-спектрометра с высокой разрешающей силой исследовались спектры ряда бортриалкилов с общей формулой ВНз, где К — метил, этил, пропил и изопропил [219]. Были идентифицированы осколочные ионы, содержащие и не содержащие бор изучались также масс-спектры дейтерированных бортриалкилов. Все это позволило установить механизм распада исследуемых молекул под действием электронного удара. На основании полученных данных были установлены закономерности, позволившие проводить идентификацию неизвестных бортриалкилов без предварительного изучения эталонов. Аналогичные исследования проводились с циклогексанонамн, меченными дейтерием и О [220] и изопропилиденовыми производными глюкозы, галактозы и других углеводов, меченных С и О [221]. [c.126]

    Всегдяпгний вопрос в масс-спектрометрии ка каком оскозапии приписывается та или иная структура молекулярным и осколочным ионам В масс-спектрах химической ионизации соединений (1-3) регистрируются осколочные ионы типа (Г,Д) (см. схема 2), которые могут образоваться только из ионов (М-СНз) в результате ретро-диеновой реакции [17]. Следовательно, фрагменты (Г,Д) и (М-СНз) и протонированные МН имеют строение, указанное на схеме 2. [c.171]

    Когда класс соединения установлен., для выяснения его структуры необходим детальный анализ пиков ионов [М—СйН2й .11+ и [М—СйН2й1+, т. е. именно тех, которые оказывались малоинформативными при определении класса вещества по масс-спектру. Для этого следует использовать подробные сведения о закономерностях фрагментации соединений данного класса с целью установить характер процессов, приводящих к появлению всех главных пиков спектра (а- или Р-распад, перегруппировка Мак-Лафферти и др.). В результате такого анализа можно предположить возможные структуры фрагментов и всей молекулы, объясняющие появление наблюдаемых в спектре пиков осколочных ионов. Установление структуры простейших гомологов возможно только по пикам первичных осколочных ионов, но в общем случае для решения этой задачи следует привлекать и пики вторичных осколочных, ионов, подтвердив их образование из первичных соответствующими пиками метастабильных ионов. Многообразие возможностей фрагментации сложных органических соединений затрудняет формулировку каких-либо общих рекомендаций для их детального структурного анализа. Следует отметить, что масс-спектры чрезвычайно полезны при идентификации органических веществ, что, однако, представляет собой самостоятельную задачу в масс-спектрометрии. [c.186]

    Метод масс-спектрометрии сснован на изучении органических ионов (осколочных ионов), образующихся под действием электронного удара пучка электронов с энергией в несколько десятков электронвольт. Результаты получаются в виде масс-спектров, в которых регистрируются типы получившихся осколочных ионов (характеристикой каждого из Ш1Х является отношение массы к заряду т е) и интенсивность каждой масс-спектральной линии, отражающая число образовавшихся ионов данного типа. С помощью масс-спектрометрии легко определить и молекулярные массы органического вещества. Уже небольшие изменения строения отражаются в масс-спектрах, как это видно из сравнения масс-спектров бутана и изобутана (рис. 33). [c.361]

    Принципиально масс-спектрометр состоит из четырех блоков системы напуска, ионного источника, системы магнитной фокусировки и детектора (рис. 1). В системе напуска образец анализируемого вещества испаряют в вакууме. Образовавшиеся пары поступают в ионный источник, где подвергаются бомбардировке пучком ускоренных электронов (энергия обычно порядка десятков элек-тронвольт). Энергия облучения расходуется на выбивание электронов из молекул анализируемого вещества — последние превращаются в положительно заряженные ион-радикалы. Такие частицы высоко реакционноспособны и нестойки. Тут же в ионизационной камере они претерпевают распад на заряженные и незаряженные осколки (отсюда название метода осколочная масс-спектрометрия ). Вся ионизационная камера находится под высоким по- [c.66]

    Помимо указанных методов, для изучения строения М. привлекают масс-спектрометрию и ряд др. методов. По массам и зарядам осколочных ионов, к-рые возникают при действии на нейтральные М. электронного удара, можно представить себе, какие и в каком кол-ве нейтральные М. были в исходной системе. Анализ изотерм адсорбции позволяет судить об изменении равновесной конфигурации ядер М. при ее фиксации на пов-сти адсорбента (хромато-скопия). Полезные качеств, заключения о строении М. могут быть получены и на основе изучения специфики их поведения в хим. р-циях, в частности реакц, способности и селективности по отношению к характерному набору реагентов, а также особенностей динамики элементарного акта хим. р-щш. [c.109]

    Процесс фрагментации имеет вероятностный характер. Это значит, что часть ионизированных молекул фрагментируется с ионном источнике, а часть — на пути к детектору, т. е. после ускорения. Последние (так называемые метастабильные ионы) не регистрируются в виде нормальных пиков осколочных ионов. В случае ДВС фрагментация ускоренных ионов обычно индуцируется в ионизационной ячейке с повышенным давлением, что требует спехдааль-ного устройства. В принципе требуются два масс-анализатора. Первый — для выбора родительского иона из ионов, образовавшихся в ионном источнике, и второй — для анализа дочерних ионов, образовавшихся в результате столкновений. Поэтому это метод называют тандемной масс-спектрометрией (МС-МС). [c.283]

    Используемые в фотоионизации энергии лежат в пределах 7-13 эВ, т.е. вблизи энергий ионизации молекул, поэтому масс-спектры близки по информативности низковольтным спектрам, полученным при ЭУ. Чувствительность этого метода довольно низка. Фотоионизационные масс-спектрометры сложнее по устройству и дороже по стоимости приборов с ЭУ, поэтому их редко используют для съемки масс-спектров. Наиболее распространенной областью применения этого метода является определение пороговых энергий образования молекулярных и осколочных ионов, т.е. определения энергий ионизации и появления. С этой целью измеряют кривые эффективности фотоионизации соответствующих ионов и проводят анализ их начальных участков. Следует иметь в виду, что нахождение пороговых значений энергий по кривым эффективности фотоионизации не всегда просто. Например, кривые, построенные для М и ионов [СНгЗ], образующихся при фотоионизации диметилсульфида (СНз-8-СНз) (рис. 2.4), резко различаются начальными участками. Наличие участка крутого подъема на кривой 1 позволяет легко определять пороговое значение энергии появления иона [c.22]

    Что происходит с ионами в масс-спектрометре с магнитным анализатором с момента их возникновения до детектирования Известно, что время, требуемое для пролета иона от ионного источника до детектора, составляет 10 . Это значит, что все ионы, имеющие время жизни более 1(Н с, способны долететь до детектора и проявиться в масс-спектре в виде нормальных пиков. Те ионы, которые имеют гораздо меньшее время жизни, распадаются непосредственно в ионизационной камере. Образующиеся фрагменты приобретают ту же кинетическую энергию, что и долгоживущие их предшественники, и поэтому фиксируются в масс-спектре в виде нормальных пиков осколочных ионов. Однако ионы, время жизни которых менее 1(И с, могут распадаться и по пути от ионного источника до детектора. Особый интерес представляет распад ионов в области между выходной щелью ионного источника и магнитом, называемой бесполевым пространством (ВПП), поскольку в этой области на ионы не действуют никакие поля. [c.59]

    Наличие кислородной функции, например в хинонах, ослабляет молекулярный ион и приводит к образованию осколочных ионов. Как установил Лестер [54], два самых крупных осколочных иона (помимо молекулярного иона) образуются путем отщепления сначала одной, а затем двух молекул окиси углерода. Бейнон и сотр. [10] с помощью масс-спектрометра с двойной фокусировкой получили доказательство, что отщепляется действительно окись углерода, а не этилен. Остаток должен претерпеть глубокую перегруппировку, так как он не распадается даже после отщепления обеих групп С — О от хиноидного кольца. [c.23]

    Практическая ценность имеющихся экспериментальных данных в значительной мере не зависит от теоретических выводов. В обычных масс-спектрометрах [8] масса осколочных ионов не может быть определена с очень высокой точностью, так как ионы могут обладать кинетической энергией. Следовательно, если осколочный ион с массой 57 получен из кислородсодержащего соединения, то вывод о том, является ли ион С3Н5О+ или С4Нв, может быть сделан на основании данных о строении исходной молекулы. При использовании масс-спектрометров с двойной фокусировкой высокого разрешения можно будет различить эти ионы, что очень важно для понимания механизма диссоциации. Однако присутствие среди продуктов распада интенсивного иона с массой 57 будет указывать на определенное строение молекулы, которое окончательно может быть установлено лишь по идентичности исследуемого масс-спектра с масс-спектром известного чистого образца. [c.44]

    В начале данного обзора было установлено соответствие известных особенностей строения исследуемых соединений наличию некоторых осколочных ионов в масс-спектрах. Делаются попытки произвести обратную корреляцию, хотя это сопряжено с многочисленными трудностями, особенно в связи с наличием перегруппированных ионов и сложностью установления природы нейтральных осколков. Эта область масс-спектрометрии сравнительно мало изучена, но за последнее время достигнуты выдающиеся успехи в установле-лии строения некоторых соединений по их масс-спектрам. [c.48]

    В предыдущих главах рассматривались основные спектроскопические методы выяснения структуры органических соеди-неиений, базирующиеся на поглощении электромагнитного излучения. Начиная примерно с 1960 г., в дополнение к этим методам все шире используется принципиально иной физический метод - масс-спектрометрия. Основой масс-спектрометрии являются разделение ионов по величинам т/г (отношения массы к заряду) и измерение населенностей (интенсивностей) ионов каждого типа. Популярность метода легко объяснима, поскольку он позволяет определить молекулярную массу и молекулярную формулу практически любого вещества, расходуя ва это ничтожное количество образца.) Кроме того, осколочные ионы несут полезную информацию о структуре изучаемого вещества.- Масс-спектрометрия постоянно развивается как в инструментальном аспекте, так и в отношении методов ионизации, благодаря чему стало возможным регистрировать масс-спектры подавляющего большинства органических веществ, а в последние годы даже высокомолекулярных, термически неустойчивых и нелетучих соединений, например пояи-пептидов и белков с молекулярной массой более 10000. Эта глава посвящена интерпретации масс-спектров и их применению для определения строения органических веществ. [c.176]

    При расщеплении альдегидов всегда выгоднее элиминирование радикала Я, чем атома водорода, поэтому в их масс-спектрах обычно наблюдается пик при т/г 29, которому отвечает ион 5.26. Фрагментация кетонов приводит к гомологичным осколочным ионам(т/г 43, 57, 71 и т. д.), которые, к сожалению, имеют те же значения т/г, что и ионы [С , ]+ (примером могут служить изобарные ионы [С НдСОр и [С Н,]+ с т/г 57) нх можно дифференцировать с помощью масс-спектрометрии высокого разрешения и путем точного определения масс. Ацилий-катионы 5.25 претерпевают далее простое расщепление связи С-С с потерей СО и образованием изобарных ионов [С,Н2 С0]+. [c.208]

    Массовое число пика М+ в масс-спектрах низкого и среднего разрешения имеет цельночнсленное значение, поэтому оно дает возможность определить лишь молекулярную массу соединения в расчете на наиболее распространенные изотопы входящих в молекулу элементов. Применяя масс-спектрометрию высокого разрешения, массовое число М+ , равно как и осколочных ионов, можно определять с точностью до 0,001 а.е.м. и выше, что позволяет устанавливать элементный состав этих ионов. [c.10]


Смотреть страницы где упоминается термин Масс-спектрометрия осколочные: [c.115]    [c.186]    [c.200]    [c.693]    [c.8]    [c.93]    [c.166]    [c.863]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.364 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия осколочных и метастабильных ионов в изучении состава фракций

Метод осколочной масс-спектрометрии



© 2024 chem21.info Реклама на сайте