Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый относительная

    В заключение отметим, что типы нефтей и связанные с ними битуминозные образования на всей территории Западно-Туркменской низменности хотя и довольно разнообразны, но имеют определенные черты сходства (низкая сернистость, относительно небольшая концентрация ароматических углеводородов и пр.). Видимо, источник нефти для образования залежей в третичных отложениях был Б разных местах впадины одним и тем же. [c.48]


    Состав сернистых соединений, относительные % в пересчете на серу- [c.16]

    Изучение индивидуального состава сернистых соединений связано с большими трудностями. Тем не менее, многолетние исследования в этой области увенчались известными успехами. В настоящее время из нефтей и нефтепродуктов выделено и охарактеризовано относительно большое число индивидуальных сернистых соединений. [c.25]

    Почти постоянное присутствие в нефтях органических сернистых соединений, сероводорода и в некоторых случаях свободной серы можно объяснить несколькими способами. Какая-то часть сернистых соединений, несомненно, образовалась из остатков исходного органического вещества. Некоторые нефти содержат комплексные сернистые соединения неизвестной структуры, которые легко разлагаются при температурах, соответствующих выкипанию бензиновых фракций, с выделением сероводорода. Этот факт, как и присутствие хлорофилловых порфиринов, указывает на относительно низкую температуру процесса образования нефти. [c.81]

    Применение сернистого ангидрида, обладающего ограниченной растворяющей способностью по отношению к углеводородам высокого молекулярного веса, обычно ограничивается экстракцией дизельных топлив, керосина, газойлевого сырья для крекинг-установок и других относительно легких нефтяных дистиллятов. Эти процессы экстракции, как правило, проводятся при температуре от —15 до -)-10° и при соотношении растворителя и обрабатываемой фракции от 0,5 до 1,5. [c.197]

    Даже для масляных дистиллятов (предварительно разделенных насколько возможно другими методами), используя высокотемпературную масс-спектрометрию, можно получить полезные сведения относительно количества определенных типов углеводородов и сернистых соединений [50, 47, 51, 52]. Метод инфракрасной спектроскопии в случае анализа масляных дистиллятов позволяет определить число метиловых и метиленовых групп в длинных цепях и циклановых кольцах [53, 54]. [c.14]

    Различные сернистые соединения уменьшают приемистость бензина не только по отношению к тетраэтилсвинцу, но и по отношению к ингибиторам окисления (антиокислительным присадкам). В этом отношении наиболее вредными являются меркаптаны и полисульфиды, особенно последние. Относительное влияние [c.242]

    В состав нефтей входят в основном углеводороды следующих четырех групп парафиновые, олефиновые, нафтеновые и ароматические. Кислород, сера и азот содержатся в виде кислородных, сернистых и азотистых соединений. Относительное содержание групп углеводородов во фракциях нефтей весьма различно. Преобладание [c.21]


    Среди сероорганических соединений наибольшее снижение приемистости к ТЭС вызывает добавление некоторых меркаптанов, дисульфидов и полисульфидов. Отмечена характерная особенность доля ТЭС, антидетонационное действие которой, подавляется сероорганическим соединением, остается постоянной вне зависимости от общей концентрации ТЭС в топливе. При этом общее количество ТЭС, деактивированное данным количеством сернистого соединения, непрерывно возрастает, а относительное количество остается примерно постоянным (рис. 46). [c.135]

    Данные предварительной оценки (см. табл. 47) свидетельствовали о том, что антагонистическое воздействие сероорганических соединений на эффективность ЦТМ значительно меньше, чем на эффективность ТЭС. Эти результаты полностью подтвердились при лабораторных исследованиях и стендовых испытаниях (рис. 58). Выяснилось, что антагонистическое действие сероорганических соединений в отношении ЦТМ оказалось намного меньшим, чем в отношении ТЭС. В отсутствие сернистых соединений фактическая детонационная стойкость бензина с ТЭС (0,84 г кг) на всех режимах работы двигателя выше детонационной стойкости этого же бензина с ЦТМ в той же концентрации. Однако в присутствии сероорганических соединений в относительно небольшой концентрации (0,05% 5) картина резко меняется. Бензин с ЦТМ на всех режимах работы двигателя показывает более высокие антидетонационные свойства, чем бензин с ТЭС (см. рис. 58). [c.158]

    Более низкая оценка детонационной стойкости бензинов с ТЭС на полноразмерном двигателе, наряду с высоким антагонистическим э ек-том сероорганических соединений в отнощении ТЭС, является причиной изменения относительной оценки ТЭС и ЦТМ в сернистых автомобильных бензинах. , [c.159]

    При относительно низкой температуре, когда возможна конденсация водяных паров из продуктов сгорания, имеет место электрохимическая коррозия под действием образующейся серной или сернистой кислот. При температуре выше критической, т. е. выше точки росы , конденсации влаги на поверхностях не происходит, но имеет место высокотемпературная сухая газовая химическая коррозия. [c.32]

    Наиболее типичное сырье каталитического крекинга — вакуумные газойли парафинистых сернистых нефтей. Однако из-за слабой адсорбционной способности парафиновых углеводородов скорость превращения их относительно невелика. Сырье нафтенового основания является предпочтительным в результате реакций дегидрирования и перераспределения водорода продукты крекинга нафтенового сырья более стабильны и содержат больше ароматических углеводородов, чем продукты крекинга парафинистого сырья. Изо- [c.49]

    Самыми агрессивными агентами, вызывающими коррозию, являются элементарная сера, сероводород и меркаптаны ( активные СС). Однако и остальные классы нефтяных СС вносят свой вклад в проявление этих коррозионных эффектов нри переработке нефти и применении нефтепродуктов в условиях повышенных температур вследствие термодеструкции сернистых компонентов с выделением серы, НзЗ и низших тиолов. Термическая стабильность и, следовательно, коррозионность нефтепродукта определяются групповым составом содержащихся в нем СС и относительной устойчивостью соединений раз.пичных классов. Глубокие исследования термостабильности различных нефтей выполнили авто- [c.78]

    При коксовании гудрона высокосернистой арланской нефти (угленосной свиты) нафтено-парафинового основания 32% общей серы выделилось в виде сероводорода, т. е. почти столько же, сколько и при коксовании гудрона малосернистой эхабинской нефти нафтенового основания. При этом относительное содержание серы в коксе было 31%, т. е. меньше, чем при коксовании гудрона туймазинской нефти, но больше, чем при коксовании гудрона эхабинской нефти. О том, что сернистые соединения арланской нефти характеризуются крайне низкой термической стабильностью, известно было из многочисленных работ, в которых отмечалось, что уже при нагревании сырой нефти до 120 °С происходит выделение из нее сероводорода. [c.65]

    В табл. 41 приведен состав золы коксов, полученных из малосернистого и сернистого крекинг-остатков и из каменноугольного пека (малосернистого). Основное отличие в составе золы малосернистого кокса от сернистого заключается в пониженном относительном содержании ванадия, никеля, фосфора и в повышенном содержании титана. Более низкое содержание натрия в пековом коксе объясняется тем, что каменноугольный пек является дистиллятным сырьем. [c.141]


    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    НПЗ бывшего СССР, построенные до 1950 г., были ориентированы на достаточно высокую глубину переработки нефти. В I960 —70 —X гг. в услови5ГХ наращивания добычи относительно дешевой нефти в Урало — Поволжье и Западной Сибири осуществлялось строительство новых НПЗ преимущественно по схемам неглубокой и частично углубленной переработки нефти, особенно в Енропейской части страны. Развитие отечественной нефтепереработки шло как количественно, то есть путем строительства новых мощностей, так и качественно — за счет строительства преимущественно высокопроизводительных и комбинированных процессов и интенсификации действующих установок. Причем развитие отрасли шло при ухудшающемся качестве нефтей (так, в 1980 г. доля сернистых и высокосернистых нефтей достигла 84 %) и неуклонно возрастающих требованиях к качеству выпускаемых нефтепродук — тов. [c.286]

    В последние годы возросло число публикаций, посвященных применению метода ГПХ для анализа нефтепродуктов и, главным образом, для определения ММР нефтяных смол, асфальтенов и других высокомолекулярных компонентов. Весьма це1шым является вариант метода с препаративным вьщелением разделяемых компонентов. Вьщеление узких фракций позволяет более тщательно оценить молекулярную массу их и позволяет построить калибровочные кривые на реальном нефтяном остатке, выбранном в качестве стандартного. На основе данных ГПХ может быть получена обширная информация не только по ММР и распределению по размерам молекул и частиц, но и по предположительной структуре асфальтенов, смол. Так, по данным разделения концентратов смол двух типичных сернистой и высокосернистой нефтей (рис. 1.11) можно сделать вывод о их различиях. В частности, для смол, выделенных из остатка товарной смеси западносибирской нефти, характерно бимодальное распределение, т. е. с относительно резким переходом от фракций с низкой молекулярной массой к фракции высокомолекулярных смол. Для смол аргганского гудрона характерно более [c.37]

    Фирма Union Oil of aliforraa опубликовала [10] результаты 27-месячного пробега установки гидрообессеривания мазута из смеси сернистых нефтей с использованием катализатора RF-11, имеющего гранулы с сечением трехлепестковой формы. С обеспечением высокой глубины удаления серы (87-94%) на катализаторе было переработано мазута 5,2 м /кг. Благодаря особой форме гранул и его поровой структуре катализатор характеризуется рядом преимуществ 1) большой емкостью по металлам при сохранении относительно высокой активности 2) меньшими размерами между поверхностью и наиболее удаленной точкой от поверхности в грануле, в результате наблюдается более эффективное использование гранул 3) меньшим перепадом давления в слое. [c.110]

    Выделение сернистых соединений и изучение их химического состава представляют значительный интерес. На основании относительно большого количества работ, проведенных к настоящему времени [25, 28, 30, 31, 32, 33, 34], можно утверждать, что сочетание хроматографических и химических методов является пока лучшим способом выделения сернистых соединений. В относительно чистом виде часть сернистых соединений удастся выделить только из ароматической фракции топлив. Сернистые соединения из ароматической части товарных реактивных топлив были выделены и исследованы авторами. Выделенце производилось хроматографическим методом на силикагеле марки АСК, затем фракции подвергались обработке 0,47-молярпым раствором сулемы и через )тутцые комплексы из них были выделены сернистые соединения 117]. Через ртутные комплексы удалось выделить лишь около 50% всех сернистых соединений, содержащихся в ароматических фракциях топлив. Физико-химические свойства выделенных сернистых соединений приведены в табл. 24 .  [c.38]

    Дистилляты коксования характеризуются относительно высоким содержанием цепредель№х углеводородов (20—40%), а полученные из сернистого сырья — также большим содержанием сернист дх еоедцнеяий. Каталитический крекинг таких дистиллятов сопровождается повышенным выходом кокса. [c.65]

    Особенно заметно указанные примеси влияют на химическую стабильность дизельных топлив, в которых содержание непредельных углеводородов относительно невелико. Возникновение и развитие окислительных процессов в дизельных топливах связаны в основном с наличием сернистых и кислородсодержащих соединений, которое, в свою очередь, зависит от исходного сырья и технологии получения. Гидроочищенные дизельные топлива, лишенные в результате гидрирования большей части активных сернистых и кислородсодержащих соединений, независимо от качества и состава исходного прямогонного дистиллята, как правило, более стабильны в процессе хранения и применения, чем негидроочищенные. [c.55]

    Растворенный сероводород в сырой нефти встречается относительно редко и является либо продуктом разложения сернистых соединенкй либо продуктом действия свободной серы на углеводороды., Укажем однако на нефть из Бомонта, в которой содержание сероводорода доходит до 0,44%.  [c.164]

    Сероводород в нефтях встречается редко, однако образуется в процессе переработки нефтей и их фракций. Сероводород — сильнейший яд, с характерным запахом тухлых яиц. При малых концентрациях в воздухе он вызывает тошноту, рвоту, головную боль, высокие концентрации сероводорода смертельны. Предельно допустимая концентрация сероводорода в воздухе 10 мг/м . Относительная плотность его по воздуху 1,19, поэтому он накапливается в колодцах, ямах, лотках и др. Во избежание несчастных случаев при работе в кх)лодцах, емкостях, при отборе проб из резервуаров или устра-чедии течей во фланцевых соединениях на установках, перерабатывающих сернистую нефть, необходимо все операции проводить в присутствии дублера-наблюдателя и пользоваться противогазом. [c.29]

    Сернистые соединения, в виду их относительного разнообразия, выделяются различными способами. Мэбери и его сотрудники выделяли алкилсульфиды из охайской нефти изапечением серной кислотой. Сернокислый раствор освобождался затем от избытка серной [c.56]

    Относительно природы ароматических углеводородов керосина высказывались разные мнения. Данные пиролиза керосина и его ароматического экстракта сернистым газом (жидким) вполне определенно позволяют заключгггь о наличии почти исключительно лшого-замещенных гомологов и лишь в очепь небольшой степени однозамещенных с длинной боковой цепью (в пользу этого допущения говорят лишь косвенные доказательства). [c.204]

    Побле очнспш серной кислотой легкое масло меняет свой желтоватый цвет на зеленоватый. Исчезает его резкий запах, и вместо нега отчетливо выступает запах сернистого газа. Подготовленное таким образом масло неско тько раз хорошо промывается водой для удаления сульфокислот и серноэфирных кислот, вызывающих эмульсию при щелочной очистке. Затем масло промывается щелочью (5%-ной), отчего цвет его желтеет п появляется приятный ароматический запах. После отстаивания масло отделяется от щелочного раствора, еще раз промывается водой, отстаивается и, по отделении воды, взвешивается. Вместо отстаивания можно просто отогнать масло с водяным паром. Потеря при очистке может достигать 10—25% и складывается из 1) действительной потери от обработки кислотой и 2) потери на улетучивание, не полное разделение, эмульсирование и т. п. Ввиду этого, даже прп самой тщательной работе, не следует брать в очистку меньше 100 г, лучше даже брать больше, чтобы относительно уменьшить ошибку вследствие второй причины. Заводские очистки, несмотря на перемешивание воздухом, часто показывают меньший процент потери, чем лабораторные. [c.402]

    Вопросы регенерации больших количеств отработанной сер ной кислоты, получающейся в процессе алкилирования, или производства т нее каких-либо ценных, продуктов привлекают внимание ученых и производст-еенников. Отработанная серная кислота содержит, кроме воды и моногидрата, сернистый ангидрид, сульфо кис-лоты, сложные эфиры и полимеры. Некоторые лредстав-1[ ление об относительных количествах этих соединений в кислоте дает табл. 39. [c.163]

    Если в колонках, в их нижних частях, в поровой воде резко уменьшается содержание сульфатов, а в осадке - содержание то невольно возникает вопрос, куда же девается 8 Конечно, можно предположить, что 8 сероводорода, образовавшегося из сульфатов, была израсходована на сернистые углеродные соединения или на взаимодействие с углекислотой, в результате чего возникли СН и Н О, а сера выпала в осадок в виде элементарной 8. Возможно также образование нестойких сернистых соединений, которые в последующем, при изучении породы, разрушились, например, в результате взаимодействия с воздухом, вернее, с О . Но, скорее всего, отсутствие в осадках, в иловой воде которых сульфатов мало или они отсутствуют, объясняется следующим образом. При обычном минералогическом анализе исследуется песчано-алевритовая фракция осадка. В эту фракцию могут попасть только относительно крупные кристаллы. Мелкие его кристаллики и такие сернистые железистые соединения, как гидротроилит, мельниковит и др., удаляются с отмывочной [c.71]

    Цель работы. Целью работы являлась интенсификация и совершенствование процессов очистки нефтепродуктов от сернистых соединений с использованием отечественных катализаторов на существующих промышленных установках, освоение процесса Изоселекториформинга и разработка новой технологии получения базового компонента авиационного бензина Б-91/115, обладающего высокой детонационной стойкостью при относительно низком содержании ароматических углеводородов, близкого по фракционному составу товарному авиабензину. [c.5]

    Относительные скорости, с которыми может протекать гидрогенизационное обессеривание различных нефтяных фракций, изучались, главным образом, качественно как на индивидуальных соединениях, так и на нефтяных фракциях. Рассмотрение термодинамики гидрообессеривания показывает, что процесс гидроочистки позволяет эффективно удалять все типы сернистых соединений нетиофеновая сера удаляется легче, чем сера тиофеновых соединений. Разрушение происходит в следующем порядке меркаптаны, полисульфиды, сульфиды, производные тиофена. Кроме того, скорость гидрогенизационного обессеривания уменьшается с увеличением молекулярного веса удаляемых сернистых соединений. [c.12]

    Количественно идентифицированы декалин, 1- и 2-метилдека-лины, 2-этилдекалин, 1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 2,3-, 2,6- и. 2,7.-диметилдекалины. Значительную часть сероорганических соединений, присутствующих в исследованных фракциях, составляют сульфиды. С- повышением температуры кипения фракций относительное содержание сульфидов снижается с 91,8 до 34,1% и соответственно повышается содержание сернистых соединений, составляющих остаточную серу. Характеристики групп углеводородов керосино-газойлевых фракций арланской нефти угленосной свиты приведены в табл. 260—295. [c.189]

    К малосернистым отнесены газы, содержание сернистых соединений в которых превышает установленные нормы на товарный газ и необходимо применение специальных технологий для снижения их содержания. Как правило, очистка проводится регенерируемыми поглотителями, например, алканоламинами. Однако количество извлекаемых сернистых соединений в этом случае относительно мало и строительство установок производства серы из газов регенерации считается экономически нецелесообразным. Поэтому кислые газы, получаемые при регенерации поглотителей на установках переработки [c.8]

    Многие сероорганические соединения, содержащиеся в нефтях, тфмически нестабильны и могут разлагаться в процессе перегонки, образуя продукты, которых не было в исходных нефтях. В процессе перегонки сернистых нефтей всегда наблюдается выделение сероводорода, который может образоваться в результате распада сложных сероорганических соединений или взаимодействия углеводородов нефти с элементной серой. Первый процесс, например для радаевской нефти, начинается уже при 115—120 °С, достигает значительной интенсивности при 190—210 °С и наибольшей — при 350—400 °С. Второй процесс идет при 200—250 °С. Наименее термоустойчивы меркаптаны, ди- и полисульфиды, разлагающиеся при относительно низких температурах более устойчивы сульфиды. Высокая термическая устойчивость характерна для циклических сульфидов и особенно для тиофена. [c.25]

    Возможны три пути предотвращения загрязнения воздуха продуктами горения сернистых котельных топлив 1) замена их несернистым или малосернистым топливом (природный газ, дистилляты высокого качества) 2) удаление ЗОа из дымовых гаэов или из газов конверсии сернистого топлива перед их сжиганием 3) десульфу-ризация остаточных котельных топлив. Первый путь ограничен недостатком несернистых топлив или значительно большей стоимостью дистиллятных. Второй — применим только для крупных котельных установок и, видимо, будет осуществляться на электростанциях, потребляющих сернистые угли или мазуты. Этот путь еще требует разработки и проверки в крупных масштабах. Для относительно небольших промышленных котельных установок, составляющих основную массу потребителей тяжелых топлив, применим только третий путь — гидрообессеривание нефхяных остатков. Он, являясь универсальным, привлекает наибольший интерес. [c.13]

    Исследование кинетики гидрогенолиза сернистых соединений различного строения показало, что по мере усложнения молекулы, особенно при сопряжении р-электронов атома серы с я-электронамж бензольных колец, реакционная способность уменьшается. Если принять за единицу скорость гидрогенолиза дибензтиофена, то относительные скорости гидрогенолиза сернистых соединений других классов составят [c.281]

    Вследствие непрочности связи С—8 и относительной легкости ее деструкции в низкомолекулярных сернистых соединениях превращения этих соединений под давлением водорода протекают относительно просто гомолитически разрывается связь С—8, свободные [c.283]

    Можно подсчитать, что, например, понижение температуры замерзания 1%-ного золя сернистого мышьяка должно составить всего 0,000003°С, а повышение температуры кипения 0,0000Г С также мало для него и относительное понижение давления насыщенного пара (0,000000003). Интересно сопоставить это со свойствами истинного раствора. Если принять, что молекулярный вес растворенного вещества равен, например, 100, то для 1%-ного водного раствора его понижение температуры замерзания составит 0,18°С, повышение температуры кипения 0,05ГС и относительное понижение давления пара 0,0018. [c.511]

    В атмосферных условиях медь относительно стойка вследствие образования защитной пленки, состоящей из нерастворимых продуктов коррозии СиСОз Си(0Н)2. Присутствие во влажной атмосфере сернистого газа и других агрессивных газов значительно усиливает коррозию меди. В этом случае на меди образуется пленка основной сернокислой меди Си304 ЗСи (0Н)2, которая не обладает защитными свойствами. [c.248]

    ЦИИ дегидрирования и гидрирования. При небольших дозировках и относительно непродолжительном воздействии отравление серой обратимо. При длительном воздействии сернистых соединений происходит закоксовывание катализатора, и для восстановления его активности требуется окислительная регенерация. (Следует отметить, что дозированная обработка платинорение-вых и платиноиридиевых катализаторов сернистыми соединениями в пусковой период является необходимым элементом технологии риформинга и используется для подавления реакций гидрогенолиза.) [c.122]


Смотреть страницы где упоминается термин Сернистый относительная: [c.126]    [c.236]    [c.345]    [c.301]    [c.183]    [c.69]    [c.35]    [c.30]    [c.291]    [c.233]   
Справочник по разделению газовых смесей (1953) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Сернистый ангидрид относительная



© 2025 chem21.info Реклама на сайте