Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура стеклования измерение ДТА ДСК

    Более правильно пластифицирующее действие определять по снижению температур стеклования, измерен--ных, например, при помощи динамических методов [9]. В этом случае также можно один из пластификаторов, например диоктилфталат, принимать в качестве стандартного. В таком случае пластифицирующее действие [c.70]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]


    В принципе, морозостойкость зависит от тех же параметров, что и эластичность, однако, так как морозостойкость определяется обычно при температурах, близких к температуре стеклования, зависимость коэффициента морозостойкости от молекулярных параметров выражена слабее, чем при измерениях эластичности. [c.91]

    Физические методы определение степени кристалличности, температуры стеклования, температуры плавления, изучение теплоты полимеризации (сополимеризации), инфракрасная спектроскопия, спектроскопия комбинационного рассеяния, нейтронная спектроскопия, ЯМР-спектроскопия, измерение дипольных моментов  [c.25]

    Что касается изложенной релаксационной концепции, рационально объясняющей видимость перехода второго рода при его действительном отсутствии, то она позволяет с удобством использовать изменение физических свойств при стекловании для прямого измерения Гс- При этом принято считать, что температура структурного стеклования есть температура, при которой физические свойства вещества изменяются в аномальном интервале наиболее резко. На кривых свойство — температура (см. рис. П. 6) Тс приблизительно соответствует точке перелома. На кривых температурных коэффициентов (см. рис. П. 7), образующих в области стеклования перегиб, температура стеклования соответствует точке перегиба. При таком определении температура стеклования Гс в принципе не зависит от чувствительности прибора и точности измерения физических свойств. Часто Гс определяется как точка пересечения экстраполированных зависимостей, наблюдаемых вне области стеклования (см. рис. П. 6). Предпочтение отдается тем свойствам, температурные зависимости которых в структурно-жидком и стеклообразном состоянии мало отличаются от линейных. В связи с этим наиболее распространенным методом определения температуры структурного стеклования (или размягчения) является метод теплового линейного расширения Температура стеклования (размягчения) определяется пересечением прямолинейных участков кривой расширения (рис. П. 8). [c.91]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации Т1 и Т2. Из данных рис. 8.8 следует наличие расхождений с результатами теории (пунктирная кривая), основанной на предположении о виде функции корреляции (8.10). При повышении температуры не обнаруживается тенденции к сближению Т1 и тз, которое, согласно теории, должно наступать сразу после проявления минимума Ть Еще более существенно наличие при высоких температурах двух поперечных времен релаксации и одного продольного. [c.225]


    Кривая РТЛ для полиизобутилена (ПИБ) (рис. 9.2) характеризуется двумя максимумами свечения. Для ПИБ отчетливо проявляются два перехода, которые относятся к процессам стеклования и вращения метильных групп. Максимум РТЛ при Т = = —52° С, который очень хорошо согласуется с данными термомеханических измерений, соответствует температуре стеклования исследуемого эластомера. Его обозначают как а-максимум и относят к некристаллическим областям полимера. Ниже темпера- [c.243]

    Применяются и другие методы определения температуры стеклования, например путем измерения величины деформации образцов при разных температурах при помощи весов Каргина . [c.87]

    Температура стеклования не является вполне точной константой. Ее величина зависит от состояния образца, скорости его нагревания и от способа измерения. Было найдено [42], что изменяется в зависимости от степени ориентации и кристалличности полиэтилентерефталата  [c.110]

    При помощи дилатометрических измерений было установлено, что температура стеклования достигает постоянного значения при молекулярной массе полиэфира 12-10 — 14-10 и равна для аморфного образца 67 С, а после кристаллизации возрастает до 81 °С. [c.111]

    С повышением температуры удельный объем [в миллилитрах на грамм (СГС) или кубических метрах на килограмм (СИ)] аморфного полимера изменяется линейно вплоть до области перехода (рис. 32.1), причем при температуре стеклования (Tg) наблюдается изменение наклона (излом) кривой. Обычно за температуру стеклования принимают температуру, отвечающую точке пересечения касательных к двум ветвям кривой, построенной по данным дилатометрических измерений (разд. 31.4). [c.149]

    В табл. 32.1 приведены температуры стеклования ряда полимеров. Tg зависит от метода измерения и скорости нагревания или охлаждения. Различия в значениях Tg для одного и того же полимера могут достигать 10 —30°С. [c.152]

    Принято считать, что с ростом степени кристалличности полимера его динамический модуль упругости и скорость распространения в нем звука возрастают [26]. Возрастание скорости звука с ростом степени кристалличности связано с увеличением межмолекулярного взаимодействия в полимере в результате повышения содержания упорядоченных кристаллических областей. Понятно, что этот эффект должен наблюдаться наиболее четко, если аморфные области полимера находятся в высокоэластическом состоянии, для которого характерно ослабление межмолекулярного взаимодействия. Поэтому акустические измерения проводят при температурах выше температуры стеклования аморфной прослойки. [c.364]

    Положение минимума на релаксационной кривой, соответствующее температуре стеклования, зависит от частоты воздействия чем ниже частота, тем ниже температура стеклования, определенная этим методом. Поэтому измерение температуры стеклования методом механических потерь (частота воздействия 10 ) дает значение на 20-30 градусов ниже. Путем несложных вычислений можно получить формулу для пересчета температур стеклования, полученных различными методами. Если частота воздействия одного метода сО , а другого оь, то в минимумах релаксационных кривых действуют соотношения  [c.386]

    Акустический метод. Перегиб на кривой зависимости скорости звука, измеренной при температуре стеклования композиции, от [c.143]

    Теплостойкость ПВХ определяется температурой перехода из стеклообразного в высокоэластическое состояние (температура стеклования Т ) и температурой перехода из высокоэластического в вязко-текучее состояние (температура течения Г ). Обычно для определения температурных переходов полимерных материалов применяют методы термомеханики [55], основанные на измерении деформации образцов полимера (таблеток или порошков) в зависимости от температуры под действием постоянной нагрузки, обеспечивающей рабочее давление и соответственно напряжение в образце, в течение определенного времени. По данным разных авторов [ПО, 133, 247] д я ПВХ = 78 - 82 °С (в среднем 80 °С) температура течения совпадае с областью температур заметной термодеструкции полимера (120 -160 Т). [c.90]

    Оказалось [128, 129], что динамический модуль Юнга Е ), измеренный при температуре стеклования или те.мпературе, равноудаленной от температуры стеклования пластифицированной полимерной ПВХ-композиции, возрастает с увеличением концентрации пластификатора. На рис. 4.9 показана зависимость Е от содержания в ПВХ композиции ДОФ и полиэфирного пластификатора (ПЭА), ограниченно совмещающегося с ПВХ. Модуль Е системы ПВХ — ПЭА в низкотемпературной области возрастает с увеличением количества ПЭА до достижения предела совместимости компонентов. Аналогичная зависимость Е от концентрации пластификатора наблюдается для системы ПВХ—ДОФ. При температурах ниже Гс модуль Е аномально зависит от концентрации пластификатора (возрастая с увеличением концентрации пластификатора) при температурах выше Гс наблюдается обычная зависимость Е и скорости звука (С) от концентрации (значения [c.160]


    Ниже приведены данные о влия-Н 1Ч пластификаторов на температуры стеклования полимеров, полученные дилатометрическим методом (рис. 194), на основании измерений деформации (рис. 195) 2 и модуля упругости (рис. 196) .  [c.436]

    Независимой и доступной прямым измерениям характеристикой подвижности звеньев цепи является температура стеклования полимеров (табл. ЗП3.1). Это температура, при которой происходит замораживание вращательной подвижности звеньев и, следовательно, потеря гибкости полимерных цепей. Чем выше температура стеклования, тем более жесткой является полимерная цепь. [c.816]

    Использование техники последовательной дисперсионной полимеризации [74] позволило получить гетерогенные полимерные дисперсии, содержащие включения дискретных частиц одного полимера в матрице другого. Включения полиметилметакрилата в частицах полиэтилакрилата образуются путем прибавления смеси метилметакрилата, инициатора, агента передачи цепи и стабилизатора к предварительно полученной дисперсии полиэтилакрилата, и новая фаза возникала, когда значение молекулярной массы образующегося полимера становилось достаточным для проявления несовместимости с основной полимерной матрицей, которая в данном случае при температуре полимеризации была мягкой и каучукоподобиой. Данные электронной микроскопии показали, что многочисленные частички полиметилметакрилата внедрялись в матрицу полиэтилакрилата (рис. У.9). По данным дифференциальной сканирующей калориметрии полимерная композиция обнаруживает две температуры стеклования. Измеренные [c.255]

    Саито и Накажима исследовали электрические свойства ряда полимеров в широком диапазоне частот и температур. Кроме того, авторы попытались установить соответствие между температурой, при которой наблюдается резкое изменение диэлектрической проницаемости, и температурой стеклования, измеренной дилатометрическим методом. Установлено, что для кристаллизующихся полимеров (полиэтилентерефталата, полиакрилонитрила, сополимера винилхлорида с винилиденхлоридом) температура перехода оказывается одной и той же при измерениях по обоим методам. С другой стороны, для аморфных полимеров (поливинилацетата, полистирола, полиметилметакрилата) температура перехода, определенная электрическим методом, не согласуется с температурой стеклования по данным дилатометрических измерений. В связи с эти.м был сделан вывод, что у этих аморфных полимеров отсутствует температура стеклования в обычном ее смысле. Шацки же , проанализировавший те л<е самые экспериментальные данные, пришел к выводу о том, что дилатометрические измерения вообще нельзя использовать для оценки температуры стеклования и что наиболее достоверные результаты получаются именно с помощью электрических измерений. [c.149]

    Саито и Накажима исследовали электрические свойства ряда полимеров в широком диапазоне частот и температур. Кроме того, авторы попытались установить соответствие между температурой, при которой наблюдается резкое изменение диэлектрической проницаемости, и температурой стеклования, измеренной дилатометрическим методом. Установлено, что для кристаллизующихся полимеров (полиэтилентерефталата, полиакрилонитрила, сополимера винил- [c.149]

    Хэйс и Ланнон приводят следующие температуры стеклования, измеренные по потере гибкости поливинилхлоридных нленок состава от 90 10 до 50 50, нластифицированных диоктилсебацинатом  [c.717]

    Измерить г и 2 для битумов невозможно, и исследователи используют в качестве градуировочной жидкости бензол. Результаты,полученные на серии битумов в области температур от 60 до 225 °С, показали, что поверхностное натяжение по мере снижения температуры линейно возрастает. Ниже определенной температуры (которая зависит от типа битума) температурный коэффициент поверхностного натяжения резко увеличивается, что объясняется автора--ми [571 изменением, происходящем в структуре бнтума. Поскольку поверхностное натяжение зависит от групп, лежащих на поверхности, оно чувствительно к изменению структуры молекул. Однако каких-либо резких изменений в структуре битума не наблюдается, вплоть до температуры стеклования. Такое несоответствие следует в значительной степени приписать вязкостным эффектам, которые затрудняют измерение при помсщи газовых пузырьков. Другие факторы будут обсуждаться ниже. [c.56]

    Последний вывод подтверждается исследованиями Бехта и Кауша [44—48], относящимися к деформированию высокоориентированных частично кристаллических волокон. В правильной сэндвич-структуре критические осевые силы могут оказывать воздействие на проходные сегменты только в том случае, если кристаллические ламеллы могут выдержать напряжения, сравнимые с прочностью цепи. Иными словами, разрушение кристалла предшествовало бы разрыву цепи. С помощью калориметрических измерений и измерений молекулярной массы методом спинового зонда Бехт [44—47] показал влияние деформации на целостность кристалла. Он облучал высокоориентированные образцы ПА-6, ПА-12, ПП, ПЭТФ и ПЭ электронами с энергией 1 МэВ при температуре жидкого азота. Затем все образцы в течение по крайней мере 5 мин нагревались до своей температуры стеклования (или выше ее). Таким образом, все радикалы в аморфной фазе исчезали, а оставались лишь радикалы в кристаллитах. Затем образцы деформировались в резонаторе ЭПР-спектрометра при комнатной температуре. [c.239]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации ti и та. Данные рис. VIII. 6 свидетельствуют о наличии расхождений с результатами теории, основанной на предположении об экспоненциальном виде функции корреляции. При повышении температуры не обнаруживается тенденция к сближе  [c.274]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Самой лучшей температурой отсчета была бы температура стеклования каждого полимера, по зто связано с рядом затрудн<1-ний, поскольку на ее положение влияют малые количества оставшихся растворителей, термическая предыстория и т. д. Кроме того, измерения вязкости и других механических свойств очень сложнс проводить вблизи Тс, и данные для этой области температур практически отсутствуют- Поэтому Вильямсом в качестве температуры сравнения была предложена температура, лежащая на 50 4 выше Тс любого полимера, [c.174]

    Если изобразить графически зависимость удельного объема от температуры, то для атактического и изотактического полимеров получаются разные диаграммы. Кривая зависимости, полученная для атактического полипропилена, характерна для аморфных материалов и состоит в грубом приблгжении нз двух линейных ветвей, которые пересекаются в точке, обозначаемой как температура перехода второго рода, или как температура стеклования (рис, 5.16) [,40], Положение этой точки в известной мере зависит от метода измерения. Таким образом, мы имеем здесь дело не с типичным фазовым превращением, а скорее с изменением энергии межмолекулярного взаимодействия, в результате которого увеличивается подвижность отдельных участков макромолекулярной цепи (сегментов), В то время как ниже температуры стеклования взаимное положение сегментов практически фиксируется, выше этой температуры энергия теплового движения сегментов увеличивается и становится достаточной для преодоления межмолекулярного, а также внутримолекулярного взаимодействия. Особенно сильно это проявляется в изменении модуля упругости аморфных полимеров. Из твердого, а часто и хрупкого состояния полимер переходит в каучукоподобное (высокоэластическое), когда уже под действием небольшой внешней силы он приобретает значительную деформацию, которая после снятия нагрузки почти мгновенно исчезает. Высокоизотактический полипропилен практически вообще не обнаруживает перехода второго рода. Зато прн температуре, близкой к точке плавения кристаллитов, его удельный объем [c.112]

    Значения температуры стеклования иолиироиилена очень сильно различаются в зависимости от используемого метода измерения и структуры полимера [26, 42—45]. Каргин и Марченко [42] исходят из того, что заметное изменение механических свойств полипропилена наблюдается в области температуры стеклования. Путем термомеханического испытания аморфизованного иолииро-пилена они получили значения Тс = —10- —15° С. Испытания проводились при нагрузках 0,3, 15,9, 510 кгс слё. Для высококристаллического полипропилена ири относительно малой нагрузке точки перехода отмечено не было. При нагрузке же 510 г / лг в указанном интервале температур эти образцы обнаруживают заметный [c.113]

    Для измерения температуры стеклования каучуков может быть использован метод многоимпульсного спин-локинга [24]. Этот импульсный метод ядерного магнитного резонанса позволяет проводить релаксационные измерения на частотах порядка 10 Гц. Условия возникновения минимума на релаксационной кривой (см. рис. 14.4) определяются соотношением [c.385]

    Измерение температуры стеклования - один из наиболее широко используемых методов определения общей гомогенности эластомерных смесей, однако он не дает информации о морфологии смесей. Гетерогенные смеси четко проявляют отдельные пики Тс для индивидуальных компонентов. Наличие одного пика Тс указывает на повышенную гомогенность (меньшие домены), но не означает обязательной совместимости. Так, невулканизованные смеси БСК-СКД характеризуются отдельными пиками Тс для каждого из каучуков как в присутствии наполнителя, так и без него, однако вулканизаты имеют одну среднюю температуру стеклования, которая ближе к Т СКД. Считается, что это связано с действием поперечных связей (затрудненность молекулярных движений), а не с изменением реальной морфологии смеси. В случае смесей меньшей гомогенности, например НК-СКД, полимерные домены достаточно велики, и поэтому индивй-дуальные температуры стеклования проявляются независимо от степени вулканизации. [c.577]

    Релаксационная концепция стеклования была впервые сформулирована одним из основоположников физики полимеров Кобеко [108]. Обычно при измерениях температуры стеклования Тст (при охлаждении) или температуры размягчения Гр (при нагревании) скорости охлаждения q— dTldt или нагревания w=dTjdt задаются в процессе опыта постоянными. Из релаксационной природы стеклования следует, что Гст и Гр с увеличением q или W должны смещаться к высоким температурам, чего никогда не наблюдается в случае фазовых переходов. [c.189]

    При температуре стеклования такие физические свойства, как например, показатель преломления, диэлектрическая проницаемость, теплоемкость, степень растяжения, удельный объем, модуль упругости, изменяются скачкообразно. Измерение температурной зависимости этих величин служит для определения темперг туры стеклования (см. раздел 2.3.4.1). [c.37]

    Температура стеклования полипропиленгликолей от димера до ППГ-4000, измеренная методом механических потерь [82], составляет —60 2 °С по данным [83], она может достигать даже —92 °С. Хотя попипропиленгликоли в силу нерегулярности структуры Tie способны к кристаллизации, присутствие полярных групп вызывает пх ориентацию прп добавках активных наполнителей. Так, введение в ППГ-2025 25% перхлората лптия приводит к повышению его температуры стеклования от —65 до +40 °С [84], причем механические свойства указывают на трехмерный характер системы. Аналогичные эффекты структурирования могут иметь место и в наполненных полиуретанах. [c.246]


Смотреть страницы где упоминается термин Температура стеклования измерение ДТА ДСК: [c.41]    [c.273]    [c.243]    [c.114]    [c.78]    [c.126]    [c.433]    [c.473]    [c.34]    [c.152]    [c.19]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.160 , c.186 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.160 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Температура измерение

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте