Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

пресных сплавы

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]


    Существуют разные конструкции паровых котлов, но по существу все они представляют собой емкости из малоуглеродистой или низколегированной стали, обогреваемые горячими газами. Из котла пар может поступать в перегреватель, изготовленный из более легированной стали, и нагреваться до еще более высокой температуры. Для обеспечения максимальной теплопередачи котловые трубы обычно объединяют в пучок, а греющие газы подают в межтрубное пространство или, реже, в трубы. Пар после совершения работы или другого использования попадает в трубчатый конденсатор, обычно из сплавов на основе меди. Охлаждающая вода может быть как пресная, так и загрязненная, солоноватая применяют также морскую воду. Сконденсированный пар затем возвращается в котел, и цикл повторяется. [c.282]

    В незагрязненной морской воде в условиях тропического климата Панамы технически чистый алюминий (марки 1100) или алюминиевый сплав, содержащий 0,6 % Si, 0,8 % Mg и 0,2 % u (марки 6061-Т), корродируют с возрастающей во времени скоростью. После 16-летних испытаний небольших пластин в этих условиях общая потеря массы металлов составила, соответственно, 67 и 63 г/м , а наибольшая глубина питтингов — 0,84 и 2,0 мм [6]. При аналогичных испытаниях в пресной воде, загрязненной, по-видимому, тяжелыми металлами, потери массы за 16 лет были выше — 347 и 103 г/м , а глубина питтингов в обоих металлах достигала 2,8 мм. [c.343]

    Свинец стоек в морской воде. Он устойчив и в пресных водах, однако из-за токсичности даже следовых количеств солей свинца применение свинца и его сплавов в контакте с мягкими питьевыми водами, газированными напитками и любыми пищевыми продуктами исключается. В аэрированной дистиллированной воде скорость коррозии свинца велика ( 9 г/м -сут — см. [1, стр. 210]) и увеличивается с ростом концентрации растворенного кислорода. В отсутствие растворенного кислорода скорость коррозии в водах или разбавленных кислотах ничтожно мала. [c.358]

    Так как монель стоек в быстро движущейся морской воде, его часто применяют при изготовлении деталей клапанов и водоотливных шахтных стволов. Из него изготавливают также промышленные емкости для горячей пресной воды и различное оборудование для химической промышленности. Он стоек в кипящих растворах серной кислоты при концентрациях ниже 20 %. скорость коррозии в этих условиях менее 0,20 мм/год (длительность испытаний 23 ч) [6]. Монель обладает очень высокой стойкостью в неаэрированных растворах HF любой концентрации вплоть до температуры кипения (в насыщенном азотом 35 % растворе HF при 120 °С скорость коррозии составляет 0,025 мм/год при насыщении воздухом — 3,8 мм/год) [7 ]. Сплав имеет высокую стойкость и в щелочах, за исключением горячих концентрированных растворов едкого натра или аэрированных растворов гидроксида аммония. [c.363]


    Обычная толщина стенки труб равна 1,245 мм. При применении пресной воды обычно используют сплавы меди, такие, как морская латунь (70% меди, 29% цинка и 1% олова). Трубы конденсаторов, охлаждаемых морской водой, обычно делают из никелевых сплавов, таких, как монель-металл. В некоторых случаях выбор материала бывает обусловлен необходимостью минимального загрязнения конденсата [61. [c.250]

    МОНЕЛЬ-МЕТАЛЛ — сплав на основе никеля, содержит до 30% меди, 2—3% железа, марганец, иногда алюминий. Очень устойчив против коррозии в морской и пресной водах, в щелочах, органических кислотах и красителях. Обладает хорошими механическими и термическими свойствами. М.-м. широко применяется в электротехнике, судостроительной, электровакуумной, текстильной, химической и других промышленностях, в медицине, а также в аппаратостроении. [c.164]

    Трубки из коррозионностойкой стали типа 304 (18— 20% Сг, 8—12% N1-, более 0,08% С, более 2% Мп), применяемые при пресных водах, имеют обычно меньшую толщину стенки по сравнению с трубками из медных сплавов (0,71 и 1,29 мм соответственно), что допустимо вследствие меньшей подверженности их общей коррозии. При образовании в них отложений или содержании в воде хлоридов они подвергаются язвенной коррозии и растрескиванию. Поэтому нужно предотвращать образование в таких трубках пробок, и поддерживать чистоту их поверхности. Они очень стойки к коррозии под действием пара и допускают высокие скорости воды (около 4,5 м/с). [c.54]

    Трубки из сплава с содержанием никеля более 12% с толщиной стенки 0,95 мм устанавливают в конденсаторах, охлаждаемых загрязненными пресными водами, частично в воздухоохладительной секции, а частично в основном трубном пучке. Они стойки к коррозии под действием конденсирующегося пара и под действием охлаждающей воды, не подвержены коррозионному растрескиванию. [c.55]

    Силикаты В пресной воде (при pH >7) и в средах с содержанием солей до 0,5 г/л Ре, Zn, С<3, А1 (в отсутствии хлор-ио-нов), РЬ, медно-цинковые сплавы 0,001—0,1 [c.108]

    Кислород (воздух) Аэрация раствора способствует поддержанию пассивного состояния коррозионно-стойких сталей и сплавов в пресной воде  [c.108]

    Эпоксидно-уретановые материалы. Эмаль ЭП-545 зеленая на основе смолы Э-49. Применяется для защиты изделий из стали и алюминиево-магниевых сплавов, эксплуатируемых в атмосферных условиях и при периодическом воздействии морской и пресной воды отвердитель — ДГУ (24,5 ч. на 100 ч. полуфабриката). [c.77]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    Медь и ее сплавы наряду со сплавами железа широко использовались человеком с древних времен. Медь имеет положительное значение термодинамического потенциала по отношению к обратимому водородному электроду (-f0,52 В для Си Си+ и +0,35 В для Си- -Си +) и поэтому обладает высокой коррозионной стойкостью в атмосферных условиях, в пресной и в морской воде при небольшой скорости движения, в большинстве кислот, кроме окислительных, в ряде органических соединений. Опасно для меди присутствие в атмосфере и в воде примесей аммиака и его производных. Важным свойством меди и ее сплавов, определившим их широкое применение в морских условиях, наряду с хорошей коррозионной стойкостью является неподверженность биологическому обрастанию в морской воде. Технически чистая медь марок МО—М4, отличающихся различ- [c.71]

    Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]

    Марки медных сплавов, наиболее широко используемых в СССР, приведены в табл. 10.2. В зависимости от химического состава и скорости течения воды используют различные марки металла (табл. 10.2) [1]. Среди условий, характеризующих коррозионную агрессивность среды, первостепенное значение имеют содержание хлоридов и скорость циркуляции. Если применяется пресная вода (речная, озерная) с содержанием хлоридов до 20 мг/л и солесодержанием до 300 мг/л, то при соблюдении общепринятых защитных мер трубы из меди и латуни Л68 характеризуются [c.192]


    Изучение причин разрушения труб из медных сплавов показывает, что для предупреждения их коррозии необходимо строгое выполнение требований по контролю за качеством поступающих на ТЭС трубок и их хранению поддержание в условиях эксплуатации достаточной чистоты поверхности трубок с водяной стороны отказ от применения способов чистки трубок с водяной стороны, способствующих разрушению защитных пленок (резкие тепло-смены для высушивания и отслаивания органических отложений, химические чистки без ингибиторов). При остановке конденсаторов на длительный срок трубки должны быть промыты чистой пресной водой. Трубки для блочных и атомных электростанций должны подвергаться полному, 100 %-ному дефектоскопическому контролю. Перед монтажом латунных трубок необходимо проводить контроль на отсутствие остаточных внутренних напряжений. [c.202]

    Несмотря на то, что коррозионные разрушения металлов и сплавов известны с незапамятных времен, наука о коррозии сложилась в сравнительно недавнее время. Предмет этой науки — изучение закономерностей взаимодействия металлов и сплавов с атмосферой, водными растворами электролитов, включая пресные и соленые природные воды и разнообразные растворы, используемые в технических целях, различными неэлектролитами. Коррозионные разрушения наблюдаются также под воздействием горячий газов при повышенных температурах, в условиях эксплуатации металлоконструкций в почве. [c.3]

    Краткий обзор ранних работ по изучению коррозионной усталости алюминиевых сплавов провел В.В.Романов [116]. Он установил, что у технически чистого алюминия и дюралюминия заметно снижается сопротивление усталостному разрушению в присутствии пресной и морской воды (табл. 10). Силумины менее склонны к коррозионному разрушению в этой среде. [c.66]

    Медь и ее сплавы. Медь обладает высокой коррозионной стойкостью в атмосфере, р-рах солей, пресной и морской воде при небольших скоростях ее движения, к-тах, не являющихся окислителями, и ряде орг. соединений. При скоростях движения морской воды более 1 м/с Си подвергается струевой коррозии. [c.478]

    Цинковые покрытия в основном применяют для защиты стальных изделий от коррозии и реже как подслой при гальванопокрытии деталей из алюминия и его сплавов. Они обладают хорощей стойкостью к нефтепродуктам, морскому и атмосферному воздуху, пресной и. морской воде и водяному пару [126]. К действию щелочных растворов с pH выше 12 цинк нестоек, а в нейтральных и слабощелочных растворах цинк обладает хорошей стойкостью. В кислотах цинк быстро растворяется с выделением газообразного водорода. [c.45]

    Человечество научилось использовать химические процессы и превращения гораздо раньше, чем возникли первые химические теории. Еще первобытные люди наблюдали такие химические процессы, как превращение твердого древесного топлива в газ в результате горения, сладкого виноградного сока в кислый уксус или хмельное вино, пресного молока в кислое и т. д. Затем человек сам научился превращать природные материалы в полезные продукты. Обжиг мягкой глины приводил к получению веществ с новыми свойстами керамики, строительного кирпича, фарфора. Соки некоторых растений позволяли окрашивать ткани в различные цвета. Наконец, около 4000 лет до н. э. люди научились выплавлять из руды медь и олово. Еще тысяча лет понадобилось для того, чтобы открыть, что сплав меди с оловом — бронза — обладает гораздо большей твердостью, чем каждый из этих металлов в отдельности. Начался бронзовый век цивилизации, длившийся около 1500 лет. [c.5]

    В отличие от алюминия магний и его сплавы стойки в щелочных и мыльных растворах (при температуре 60°С). Однако в разбавленных кислотах магний растворим с бурным выделением водорода. В пресной и морской воде. [c.14]

    Пресная и, в большой степени, морская вода сильно снижают усталостную прочность стали. Сплавы никеля, медь и сплавы меди хорошо сопротивляются коррозионной усталости в различных водных средах. Это обусловлено их более высоким сопротивлением коррозии в этих средах. Чистые металлы (ие склонные к коррозии под напряжением) подвержены коррозн-оппой усталости. [c.455]

    Пресные и особенно слабосрленые воды в большей степени влия -ют на коррозионную усталость стали, чем на медь. Нержавеющая сталь и никель или никелевые сплавы также более устойчивы, чем углеродистая сталь. В целом, склонность металла к коррозионной усталости в большей степени определяется его коррозионной стойкостью, чем механической прочностью. [c.158]

    КЛАССИФИКАЦИЯ И ОБЛАСТИ ПРИМЕНЕНИЯ. В зависимости от содержания цинка латуни носят разные названия. Сплав 2п—Си с 40% 2п, мюнц-металл (а-,р-латуни) применяют преимущественно в конденсаторных системах, в которых в качестве охлаждающей среды используют пресную воду (например, воду Великих озер). Морская латунь имеет близкий состав, но содержит еще 1 % 5п. Марганцовистая бронза также аналогична по составу, но дополнительно содержит по 1 % 5п, Ре и РЬ. Помимо прочего, ее используют для изготовления гребных винтов. Обесцинкование гребных винтов из марганцовистой бронзы в морской воде в какой-то степени предотвращается катодной защитой при контакте винтов со стальным корпусом судна. [c.331]

    Желтая (обычная) латунь, сплав 2п—Си с 30 % 2п, нашла широкое применение благодаря тому, что легко подвергается механической обработке и обладает хорошими литейными свойствами.. Сплав постепенно обесцинковьшается в морской воде и мягких пресных водах. Склонность к этому процессу уменьшают добавкой 1 % 5п, а получаемый при этом сплав называют адмиралтейским металлом или адмиралтейской латунью. Добавление не- [c.331]

    В пресных водах часто применяют медь, мюнц-металл и адмиралтейскую латунь (ингибированную). В солоноватой или морской воде используют адмиралтейскую латунь, медно-никелевые сплавы, содержащие 10—30 % N1, и алюминиевую латунь (22 % 2п, 76 % Си, 2 % А1, 0,04 % Аз). В загрязненных водах медноникелевые сплавы предпочтительнее алюминиевой латуни, так как последняя подвержена питтинговой коррозии. Питтинг на алюминиевой латуни может также наблюдаться в незагрязненной, но неподвижной морской воде. [c.339]

    В настоящее время применяют бронзовые покрытия двух составов, содержащие 10—20% и 40—45%) 5п. Осаждение бронзовых покрытий ведут преимущественно из цианистых электролитов. Гальванические бронзовые покрытия, содержащие 10% 5п, применяют для имитации золота, а 15—20% 5п исключительно с целью защиты от коррозии. Так, изделия, покрытые этим сплавом и работающие в пресной воде при высоких температурах, сохраняются дольше, чем оцинкованные. Гальваническое покрытие белой бронзой, содержащей 40—45% 5п, применяют для защитно-декоративных целей. Высокооловянистая бронза имеет белый цвет и по внешнему виду напоминает серебро, но в отличие от последнего, обладает высокой твердостью. Твердость белой бронзы в 5—6 раз выше твердости меди. Белая бронза прекрасно полируется и хорошо отражает свет. Коэффициент отражения ее составляет 65— 66%, т. е. выше, чем у хрома. Сплав хорошо переносит атмосферное воздействие, устойчив по отношению к сульфидам (в отличие от серебра), удовлетворительно противостоит действию органических кислот, входящих в состав пищевых продуктов. [c.210]

    Легирование никеля медью несколько повьпиает его коррозионную стойкость. Сплавы никеля, содержащие 30% меди (например, монель-металл. никель - основа, 27.. 29% меди, 2...3% железа, 1.2... 1.8% марганца), обладаюг высокой коррозионной стойкостью в пресной и морской воде, растворах серной (до 20%), плавиковой и ортофосфорной кислот. Легирование никеля хромом заметно повышает стойкость в окисл1ггельных средах, однако увеличивается чувствительность к воздействию анионов хлора. Совместное легирование никеля хромом и молибденом повышает устойчивость сплавов в окислительных и восстановительных средах. [c.17]

    Из силавов АМг изготовляются трубы, работающие в пресной воде оборотной системы водоснабжения нефтеперерабатывающих заводов при температуре 45° С. В этих условиях трубы из сплава АМг в 3—4 раза долговечнее, чем из углеродистой стали и в 2 раза долговечнее труб из нестабилнзирован-иой латуни. [c.186]

    Покрытии сплавом, содержащим 10—20 % олова, хороию защтца-ют стальные детапи от коррозии в пресной воде прн 90—100 С, обладают хорошими антифрикционными свойствами, паяемостью, высокими декоративными свойствами [c.165]

    ХИТ, активируемые природной водой. Эти источники тока получают в последнее время все большее распространение ввиду расширения работ по освоению морей и океанов и вследствие того, что отсутствует необходимость в специальном хранении и транспортировании электролита — морской или пресной воды. Обычно в качестве анода в водоактивируемых ХИТ применяют магниевые сплавы, а в качестве катода — труднорастворимые хлориды (Ag l, u l, РЬСЬ). [c.78]

    Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насан<енных полуоболочек (см. раздел 17.2.3). В случае солоноватых или сильно соленых вод, получаемых, например, при добыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5. [c.182]

    К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6). [c.188]

    Ферросилид представляет собой сплав железа с 14 % 81 и 1 % С. Он имеет плотность 7,0—7,2 г-см . При протекании анодного тока на поверхности формируются покрытия, содержащие кремнезем (двуокись кремния), которые затрудняют анодное растворение железа и способствуют образованию кислорода по реакции (8.1). В морской и солоноватой воде образование поверхностного слоя на ферросилиде оказывается недостаточным. Для улучшения стойкости при работе в соленых водах в сплав добавляют около 5 % Сг, 1 % Мп и (или) 1—3 % Мо. Ферросилидовые анодные заземлители ведут себя в воде с большим содержанием хлоридов хуже, чем графит, потому что ионы хлора разрушают пассивное покрытие на поверхности этого сплава. Поэтому предпочтительными областями применения таких сплавов являются грунт, солоноватая и пресная вода. Средняя допустимая токовая нагрузка составляет 10—50 А-м-2, причем потеря от коррозии в зависимости от условий эксплуатации не превышает 0,25 кг-Д- -год-. Ввиду малости коррозионных потерь материала ферросилидовые анодные заземлители нередко укладывают непосредственно в грунт [6] необходимо позаботиться об отводе образующихся газов, потому что иначе сопротивление растеканию тока с анодов получится слишком большим [7]. [c.202]

    Фосфаты, ио-лифосфаты В пресной воде (при pH > 6) Ре, А), 2п, Сс1, РЬ, мед-но-цинковые сплавы в морской воде полифосфаты защищают стали, особенно в сочетании с ионами кальция 0,001—0,1 для пресной воды для морской воды 0,2 полифосфатов при содержании ионов кальция до 0,15 [c.108]

    Теплообменная аппаратура в процессе эксплуатации под действием оборотной воды подвергается не только коррозионному разрушению, приводящему к уменьшению толщины стенки теплопередающей поверхности, но и обрастанию, как биологическому, так и за счет отложений продуктов коррозии и карбонатов кальция и магния, содержащихся в циркулирующей воде. Как коррозия, так и отложения наиболее сильно сказываются на работе трубных пучков кожухотрубчатых теплообменников. Нормальная эксплуатация кожухотрубчатых аппаратов требует периодической очистки внутренних поверхностей трубок от отложений, ухудшающих теплопередачу и уменьшающих сечение охлаждающего потока. Очистку проводят механически (ершами) через каждые 6 мес эксплуатации. Разрушения от коррозии, истирание и механические воздействия при чистке нередко приводят к перфорации трубок. Дефектные трубки изолируют заглушками. Пучок требует полной замены, когда заглушено более 20 % трубок. Срок службы трубных пучков значительно ниже срока службы сосудов и массообменных аппаратов (20 лет) и срока службы трубопроводов (10 лет) и при использовании углеродистой стали и пресной оборотной водой не превышает 2,5 лет. Таким образом, затраты на капитальный ремонт конденсационно-холодильного оборудования на химических предприятиях составляют от 25 до 40 % затрат на ремонт основного оборудования. Следовательно, при выборе материала для трубных пучков конденсаторов-теплообменников небходимр учитывать качество охлаждающей воды и сопоставлять стоимость конструкционного материала с расходами на очистку воды и капитальный ремонт теплообменников. В табл. 2.5 [101 указаны сплавы меди, рекомендуемые для изготовления теплообменной аппаратуры в зависимости от качества охлаждающей воды. [c.32]

    Несмотря на то что нержавеющие стали и сплавы созданы специально для эксплуатации в различных агрессивных средах, их коррозионная усталость изучена меньше, чем углеродистых сталей. В ранних работах, выполненных в 20-х годах Мак Адамом и другими исследователями, показано, что нержавеющие стали хорошо сопротивляются коррозионноусталостному разрушению в пресной воде и ее парах, 3 %-ном растворе Na I, а также других сравнительно малоагрессивных средах. Однако некоторые нержавеющие-стали, например мартенситного класса, обладая высокой коррозионной стойкостью в ненапряженном состоянии, имеют низкое сопротивление коррозионной усталости. Часто условный предел коррозионной выносливости этих сталей такой, как и обычных углеро- [c.58]

    Б. используют для изготовления шестерен, направляющих втулок, подшипников скольжения, арматуры для работы в пресной и морской воде и атмоа ре водяного пара, судовых гребных винтов, пружин, манометрич. трубок, электродов сварочных аппаратов, дымовых труб и труб для сточных вод, монет, скульптур, колоколов и др. Особенно широко применяют алюминиевые Б., к-рые менее дороги, чем оловянные. См. также Меди сплавы. [c.321]

    Важными коррозионностойкими материалами являются также Ni, Al u, Ti и сплавы на их основе Никель устойчив к воздействию горячих и холодных щелочей, разбавленных неокисляющих орг и неорг к-т, а также воздушной атмосферы Легирование медью повышает его стойкость к коррозии в восстановит средах, а также к питтинговой коррозии в морской воде Легирование хромом повышает сопрот ивление воздействию окислит сред, а молибденом восстановительных, одновременное легирование хромом и молибденом воздействию тех и других сред Алюминий обладает хорошей стойкостью к коррозии в атм условиях, в р-рах уксусной и азотной к-т, парах S, SQ2 и др Легируют AI небольшими кол-вами др металлов, гл обр для улучшения его мех характеристик Медь устойчива к воздействию возд)ха, морской и пресной (горячей и холодной) воды, деаэрир р-ров неокисляющих к-т Сплавы Си с А1 (алюминиевая бронза) и Ni (купроникель) используют для изготов- [c.164]

    Латуни более стойки в потоке морской воды, чем Си, поэтому широко применяются для изготовления деталей трубопроводов, насосов, арматуры и теплообмениого оборудования, охлаждаемого пресной и морской водой, судовых гребных винтов. Виды коррозии латуней, ограничивающие их пром. применение,-обесцинкование в р-рах хлоридов и коррозионное растрескивание в аммиачных средах. а-Латуни, легированные As <ок. 0,04%), не подвержены обесцинкованию в большинстве сред. Алюминиевые латуни обладают повыш. стойкостью против струевой коррозии. См. также Меди сплавы. [c.478]


Смотреть страницы где упоминается термин пресных сплавы: [c.332]    [c.108]    [c.194]    [c.199]    [c.277]    [c.477]    [c.323]    [c.293]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Железоникелевые сплавы пресной воде

Медные сплавы пресной воде

Никелевые сплавы пресной

Сплавы медноникелевые, коррозия почве в пресных

пресных расплавленный, действие на алюминий сплавы меди с никелем сталь чугун



© 2025 chem21.info Реклама на сайте