Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая таблица и физические свойства

Рис. 7-3. Полная форма таблицы периодической системы элементов. Если элементы выстроены в один ряд по возрастанию порядкового номера, как это показано в верхней части рисунка, повторяемость сходных химических свойств наталкивает на мысль о возможности построения периодической таблицы складной , длиннопериодной формы, показанной в нижней части рисунка. Все элементы можно подразделить на три категории по степени изменяемости их физических Рис. 7-3. <a href="/info/1633618">Полная форма</a> <a href="/info/631624">таблицы периодической системы элементов</a>. Если элементы выстроены в один ряд по возрастанию <a href="/info/7331">порядкового номера</a>, как это показано в <a href="/info/1006898">верхней части</a> рисунка, повторяемость <a href="/info/758391">сходных химических</a> свойств наталкивает на мысль о возможности <a href="/info/136109">построения периодической таблицы</a> складной , <a href="/info/1427276">длиннопериодной</a> формы, показанной в <a href="/info/250522">нижней части</a> рисунка. Все <a href="/info/1715115">элементы можно</a> подразделить на три категории по степени изменяемости их физических

    Главная подгруппа V группы периодической системы химических элементов Д. И. Менделеева включает пять элементов азот N, фосфор Р, мышьяк Аа, сурьму 8Ь и висмут В1. Каждый из этих элементов на внешнем слое имеет 5 электронов (конфигурация С увеличением атомного номера свойства простых веществ, образованных атомами элементов этой подгруппы, закономерно изменяются увеличивается плотность, усиливается окраска, уменьшается электроотрицательность. Азот и фосфор — типичные неметаллы, висмут имеет больше металлических свойств. Мышьяк и сурьма занимают промежуточное положение. Многие их соединения обладают полупроводниковыми свойствами. Физические свойства элементов приведены в таблице 26, свойства простых веществ в таблице 27. [c.118]

    Между положением в периодической таблице легких элементов и их химическими свойствами не всегда обнаруживается закономерная взаимосвязь. Например, бериллий (II группа) во многих отношениях напоминает алюминий (группа ША) много общего также между бором и кремнием. Степени окисления этих элементов соответствуют номерам их групп, но, судя по свойствам образуемых ими соединений, по кислотно-основным характеристикам этих элементов и их физическим свойствам, между ними существует необычная для периодической системы диагональная связь. Причиной этого является сходство так называемых ионных потенциалов у диагонально расположенных в периодической таблице пар элементов. Ионным потенциалом (не пу- [c.105]

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]


    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]

    Рассмотрение табл. 7-2 показывает, что Менделееву удалось очень точно предсказать физические и химические свойства недостававшего в его системе эле.мента. Этому элементу отводилось место в периодической таблице под кремнием, 81, и над оловом, 8п. Физические свойства германия представляют собой как раз нечто среднее между свойствами кремния и олова. Для предсказания химических свойств экасилиция Менделеев воспользовался также данными о закономерном изменении свойств в триаде фосфор-мышьяк-сурьма (8Ь), являющейся в периодической таблице правым соседом триады кремний-экасилиций-олово. [c.310]

    Большую часть материала, изложенного в данной главе, намного легче понять и запомнить, если руководствоваться некоторыми закономерностями в физических и химических свойствах элементов, связанных с их положением в периодической таблице. Некоторые из наиболее важных закономерностей этого типа иллюстрируются рис. 21.3. Напомним, что электроотрицательность элементов возрастает при перемещении снизу вверх вдоль любой группы и слева направо в любом периоде. Таким образом, неметаллы характеризуются более высокими электроотрицательностями, чем металлы. При перемещении сверху вниз в каждой группе последовательно усиливаются 1 металлические свойства элементов. [c.284]

    Далее мы видим, что внешние электронные оболочки сходны у атомов элементов (Ы, Ыа, К, 1 Ь, Сз) (Ве, Мд, Са, 8г) (Р, С1, Вг, Л) (Не, Ые, Аг, Кг, Хе) и т.,д. Именно поэтому каждая из вышеприведенных групп оказывается Б определенной группе периодической таблицы Ы, Ыа К, НЬ, Сб — в I группе, Р, С1, Вг, Л — в VII и т. д. Именно вследствие сходства строения электронных оболочек сходны их физические и химические свойства. [c.61]

    Развитие химии в период творческой деятельности Д. И. Менделеева привело ученого к выводу, что свойства химических элементов определяются их атомной массой, т. е. величиной, характеризующей относительную массу атома. Поэтому в основу систематики элементов он положил именно атомный вес, как фактор, от которого зависят физические и химические свойства элементов. Д. И. Менделеев сформулировал периодический закон так свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов . Вслед за открытием закона Д. И. Менделеев опубликовал периодическую систему элементов, в которой вертикальные ряды сходных элементов назвал группами, а горизонтальные ряды, в пределах которых закономерно изменяются свойства элементов от типичного металла до типичного неметалла,— периодами. Современная периодическая система химических элементов Д. И. Менделеева состоит из семи периодов и восьми групп и содержит 105 элементов. Порядковый номер элемента в периодической системе не только определяет его положение в таблице, но и отражает важнейшее свойство атомов — величину заряда их ядер. Поэтому периодический закон Д. И. Менделеева в настоящее время формулируется так свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядер атомов элементов. [c.43]


    В настоящей книге подробно описаны подготовка и выполнение демонстрационных опытов на лекциях но курсу неорганической химии (руководство содержит свыше 350 экспериментов). В ней перечислены экспонаты, образцы свободных элементов и химических соединений, которые рекомендуется демонстрировать в различных разделах этого курса, и приведены таблицы, характеризующие некоторые физические свойства элементов периодической системы Д. И. Менделеева. [c.3]

    Недостатком разделения элементов по подгруппам на основании физических методов исследования является то, что для разных свойств получаются разные варианты таблицы. Так, например, по своим спектральным свойствам водород аналогичен щелочным металлам, а гелий — щелочноземельным. Поэтому оба эти элемента в таблице периодической системы в работах, посвященных спектроскопическим исследованиям химических элементов, помещаются в первой и во второй группах,где по этим свойствам им и надлежит быть. Однако нахождение гелия во второй группе при классификации, учитывающей не спектральные, а какие-либо другие физические свойства, оказывается совершенно неоправданньом. [c.274]

    В данном приложении приведены таблицы, характеризующие некоторые физические свойства элементов периодической системы Д. И. Менделеева, а также схемы ряда химических производств, которые целесообразно рассмотреть в соответствующих разделах курса неорганической химии. [c.169]

    Вертикальные колонки периодической таблицы называют группами химических элементов (переходы между короткими и длинными периодами в табл. 5.1 показаны стрелками). Элементы, входящие в одну группу, можно называть родственными эти элементы обладают весьма близкими физическими и химическими свойствами. [c.104]

    Периодическая таблица представляет собой одно из выдаЮ щихся систематизирующих достижений в физике. Среди примерно ста элементов есть группы, имеющие очень близкие химические и физические свойства галогены Р, С1, Вг, I и щелочные металлы Ы, N8, К, КЬ, Сз служат типичными примерами таких групп. В середине XIX в. было предпринято много попыток выявить тот признак элементов, на основании которого можно было бы естественным образом распределить их по группам с одинаковыми свойствами. Эта задача была решена Д. И. Менделеевым, указавшим в 1869 г., что физические и химические свойства элементов и их соединений периодически зависят от их атомных весов. [c.50]

    Следует заметить (см. рис. 11 [32]), что потенциалы ионизации, являющиеся мерой прочности связи с ядром внешних электронов (см. предпоследний столбец в табл. 14), показывают ту же периодичность, что и химические и физические свойства, использованные при построении периодической таблицы. [c.229]

    Уже в первых вариантах периодической таблицы Менделеев оставил пустые места для трех новых элементов, которые он назвал экаалюминием, экасилицием и экабором (приставка эка на санскрите означает один ). Развернутое описание свойств этих элементов он дал в 1871 г. в первой подробной статье о периодическом законе Периодическая законность химических элементов . Однако эта статья, как и более ранние сообщения Менделеева, прошла почти незамеченной, и до 1875 г. об этом открытии в мировой химической литературе почти не упоминалось. В 1875 г. французский химик Лекок де Буабодран сообщил об открытии нового элемента, который он назвал галлием в честь Франции. Менделеев сразу же сообщил на заседании Русского химического и Русского физического обществ, что галлий - это предсказанный им четыре года тому назад экаалюминий и написал об этом в Парижскую академию наук, дополнив первое краткое описание де Буабодрана. Более того, он указал, что плотность металлического галлия должна быть не 4,7, как нашел де Буабодран, а 5,9-6,0 г/см . Буабодран тщательно очистил галлий и опреде- [c.231]

    Физический смысл периодичности химических свойств состоит в периодическом изменении конфигурации электронов на внешнем энергетическом уровне (валентных электронов) с увеличением заряда ядра. Графическим изображением периодического закона является периодическая таблица. Она состоит из 7 периодов и 8 групп. [c.83]

    Ранее мы уже отмечали (см. гл. 3), что электроотрицательность элементов обычно увеличивается при перемещении вправо вдоль периода, но уменьшается при перемещении вниз по группе. В результате этого наиболее реакционноспособные металлы сосредоточены в нижнем левом углу периодической таблицы, а наиболее реакционноспособные неметаллы — в верхнем правом углу. Эта закономерность достаточно подробно обсуждается в школьной учебной литературе и поэтому хорошо известна заинтересованному читателю. К сожалению, очень редко обращается внимание на другую, казалось бы частную, но также очень важную закономерность — существование так называемых диагональных соотношений в периодической таблице. Каждое диагональное соотношение связывает между собой пару элементов, находящихся в соседних группах, но обладающих сходными химическими и физическими свойствами. Классически- [c.223]

    Вместе с тем многие физические свойства элементов соответствуют их положению в периодической системе. Температуры плавления и кипения типичных металлов (табл. 6.7), как правило, повышаются при переходе снизу вверх вдоль группы, а для неметаллов, наоборот, возрастают при переходе сверху вниз вдоль группы. Плотность металлов в общем связана с их положением в периодической системе. Наименее плотные металлы относятся к группам I и II иногда их так и называют легкими металлами . Наиболее плотные элементы, естественно, обнаруживаются среди тех, у которых самый большой атомный вес и самый маленький атомный объем, следовательно, в середине нижней части таблицы. Самым плотным элементом является осмий, его плотность равна 22,84 г/см . Окраска элементов почти не связана с их положением в периодической системе, если не считать того, что все элементы группы VIIА—галогены — обладают окраской. Большинство металлов имеют белый цвет, но все металлы с желтой окраской (Си, Ag и Аи) располагаются в группе 1Б. В дальнейшем (см. гл. 10) мы убедимся, что элементы одной группы кристаллизуются в сходных формах вследствие сходства их степени окисления, электроотрицательности и характера химической связи. [c.105]

    В 1954 г. была издана книга Цейзе Термодинамика [4384], в которой приводятся таблицы термодинамических свойств, опубликованные в периодической литературе до 1953 г. В связи с тем, что все таблицы приведены без каких-либо уточнений по сравнению с оригинальными работами, в том числе опубликованными в начале тридцатых годов, в книге содержится много устаревших и неточных данных. Таблицы перечисленных авторов либо охватывают малый температурный интервал, либо вычислены слишком приближенно (часто с использованием устаревших исходных данных), либо не охватывают многих компонентов продуктов сгорания. К этому времени были уточнены или определены впервые физические и термические константы для многих атомов и молекул, что наряду с достигнутым развитием статистических методов расчета термодинамических величин позволило вычислить более полные и точные таблицы термодинамических свойств для большего числа многофазных компонентов продуктов сгорания топлив. [c.11]

    В различных вариантах таблицы Периодической системы водород включается либо в первую, либо в седьмую группы элементов, либо одновременно в обе. Более обосновано помещение водорода в седьмую группу. Подобно галогенам, он способен присоединять. тишь один электрон до завершения устойчивой электронной конфигурации. При этом водород, как и галогены, образует солеподобные соединения с наиболее актигин ,1ии металлами (гидриды), например NaH, СаНг. Гидриды — ионные соединения, п которых отрицательным ионом является Н . Ближе к галогенам водород и по физическим свойствам. [c.206]

    Селен и теллур в элементарном состоянии отличаются от серы своими физическими свойствами этого и следовало ожидать, учитывая относительное положение данных элементов в периодической таблице. Они обладают более высокими температурами плавления, температурами кипения и плотностями, как это видно из данных, приведенных в табл. 25. [c.300]

    Однако прежде чем говорить о возникновении про блемы элемента № 61, мы хотим сделать несколько замечаний. Начать хотя бы с того, что биография этого элемента настолько своеобразна, что вряд ли сыщется что-либо подобное у других 102 элементов периодической таблицы. Решение вопроса об элементе № 61 было блистательным примером сотрудничества химии и физики там где одна наука оказывалась в тупике, ей на помощь приходила другая,— и это дает нам основания выделить в истории элемента № 61 химические и физические этапы. И, наконец, получение прометия в количествах, измеряемых граммами, и изучение его свойств отнюдь не означает решения проблемы наоборот, перед исследователями встали новые задачи. [c.152]

    Первое сообщение в Русском Химическом Обществе Д. И. Менделеев сделал в марте 1869 г. в нем он дал распределение элементов в порядке возрастающих атомных весов, показанное в табл. 3-3. Можно видеть, что расположение элементов, предложенное Менделеевым, мало отличается от того, которое за пять лет до этого дал Одлинг. Однако Менделеев первый оценил значение этой периодичности. В первой статье он считает групповое сходство элементов настолько важным, что в случае необходимости изменяет порядок элементов, вопреки значениям атомных весов, чтобы сохранилось групповое сходство химических свойств. Он указывал, что это может служить доказательством неправильности известных в то время значений атомных весов, и, в частности, особенно отметил атомные веса теллура и иода. Интересно и важно, что Д. И. Менделеев оставил свободные места в своей таблице и для еще не открытых элементов и даже высказал мнение, что химические и физические свойства этих элементов можно правильно предсказать на основании их положения в таблице. Летом 1871 г. Д. И. Менделеев опубликовал более точную формулировку периодического закона и более известную сейчас форму таблицы (табл. 3-4). Хотя эта форма таблицы несколько отличается от короткой формы, используемой иногда и теперь, в основном она та же самая. [c.83]

    Работа химика весьма часто заключается в определении физических и химических характеристик веществ. Группировать эпи данные можно различными способами. Самый лучший способ — это гакой, который позволяет выявить закономерности в экспериментальных величинах. Очень часто наличие таких закономерностей стимулирует работы по исследованию причин их существования. Разработка периодической таблицы является великолепным примером ценности такого подхода (гл. II, разд. Б.4). Вспомните, как вы предсказывали свойства элементов, исходя из знания свойств элементов, расположенных рядом. [c.184]

    При взаимодействии с другими элементами периодической таблицы хлор образует многочисленные соединения-хлориды, которые в зависимости от свойств партнера (металла или неметалла) могут быть либо солями хлористоводородной кислоты, либо несолеобразными хлоридами. Примером монотонного изменения физических и химических свойств от основных к кислотным и от солей [c.26]

    Jи ич <а Периодическая таблица приведена на форзаце. По- ябпща рядок расположения элементов характеризуется периодическим изменением их физических и химических свойств. Периодичность означает повторение свойств через правильные интервалы. Так, щелочные металлы, галогены и благородные газы располагаются в таблице через правильные интервалы в 8 или 18 элементов. Такой порядок изменения свойств является следствием способа заполнения электронных оболочек атомов (разд. 2.5.3). [c.358]

    Предложенная Менделеевым периодическая таблица со временем подверглась изменениям, однако в основном ее построение осталось неизменным. Наиболее важному изменению в концепции о периодичности подвергся сам принцип расположения элементов в определенной последовательности. Оказалось, что положение каждого элемента в этой последовательности определяется не атомным весом, а порядковым (атомным) номером. Поэтому современная формулировка периодического закона гласит при расположении элементов в последовательности возрастани.ч порядковых (атомных) номеров их физические и химические свойства обнаруживают периодические изменения (см. рис. 6.4). [c.89]

    К физическим свойствам элементов. Графики занисимости между атомными весами и температурами плавления, температурами кипения, коэффициентами расширения и магнитной восириимчивостп, мольными объемами, частотами колебаний и потенциалами ионизации показывают периодические возрастания и убывания. Некоторые из таких данных приведены в табл. 2. Температуры плавления взяты из таблиц Ландольта — Бернштейна. Атомные объемы, использованные в работе Лотара Мейера, установившего их периодичность, были в дальнейшем пересмотрены Бауром [2], по даппым которого построен приведенный на рис. 1 график. Периодичность изменения свойств сжимаемости элементов впервые была обнаружена Ричардсом [3], п некоторые из его данных прпведены в табл. 2. Использованные им величины, как правило, относились к температуре 293,1° К и были выра кены в обратных мегабарах. Более точные величины получены Бриджменом [4] для температуры 303,1° К, причем в качестве единиц измерения он использовал (кг1см ) . Данные Бриджмена относятся к бесконечно малым давлениям, и они получены экстраполяцией сжимаемостей, измеренных при различных давлениях. За исключением водорода, азота, кислорода, галогенов и редких газов, атомные объемы и сжимаемости приведены для элементов в твердом состоянии. [c.191]

    Вещества, самопроизвольно испускающие радиацию, называются радиоактивными. Молекулы этих веществ содержат атомы элементов, для которых найдено, что они обладают указанным свойством. Переходы радиоактивных элементов и их отношение к стабильным элементам периодической таблицы установлены из рассмотрения излучений, которые они испускают, и по свойствам вновь образующихся атомов. Изучением излучения занимается физика рассмотрение остатков ядер является областью химии способ исследования, исиользованнып ири изучении скоростей радиоактивного распада атомов, отражает возможности и методы физической химии. [c.201]

    Плутоний принадлежит к элементам VH периода таблицы Менделеева и следует в нем за ураном и нептунием. В отношении места этих элементов в периодической системе в настоящее время наиболее распространена теория Сиборга [3, гл. 17 170, 203, гл. 11 646, 648]. По этой теории у элементов, начиная формально с тория и кончая лауренсием, происходит последовательное заполнение четырнадцатью электронами внутреннего энергетического уров1НЯ 5/. Так как количество внешних валентных электронов (один электрон 6d и два —7s) при этом не меняется и остается рав ным количеству валентных электронов актиния, химические и физические свойства членов ряда должны быть сходны, а сам ряд получил название актинидов. Подобная закономерность четко выражена у лантанидов, имеющих электронную структуру сверх структуры ксенона if ndQs и главную валентность 3. [c.13]

    Карбонилы металлов представляют особый интерес для химии металлов. Эта группа соединений не только обнаруживает некоторые поразительные физические свойства, но их строение является необычайным вызовом по адресу всех теорий химических связей. Образующие истинные карбонилы элементы располагаются в группах VI, VII и VIII периодической системы Менделеева. В таблице помещены карбонилы этих металлов. [c.222]

    Окончательный и самый важный шаг в разработке периодической таблицы был сделан в 1869 г., когда русский химик Дмитрий Иванович Менделеев (1834—1907) выполнил работу но тщательному изучению соотношения между атомными весами элементов и их физическими и Х1[мическими свойствами, обратив при этом особое внимание, на валентность (гл. IX и X). Менделеев предложил периодическую таблицу, содержащую 17 столбцов, в общем похожую на периодическую таблицу, воспроизведенную в этой книге (табл. 4), но не вклкчаю]цую инертные газы (в то время инертные газы еще не были открыты, см. далее раздел 4). Затем Менделеев пересмотрел эту таблицу и передвинул, некоторые элементы на другие места, соответствующие уточненным значениям их атомных весов. В 1871 г. Менделеевым и независимо от него немецким химиком Лотаром [c.89]

    Вертикальные колонки периодической таблицы с переходами между короткими и длинными периодами называются группами химических элементов. Элементы, входяище в одну и ту же группу, можно называть род-4 твеннымщ эти элементы обладают весьма близкими физическими и химическими свойствами. [c.93]

    Исключительное положение водорода в периодической системе легко объясняется на основании теории Косселя, если принять во внимание, что он стоит в таблице до гелия. Так как Н в нейтральном состоянии обладает только одним электроном и поэтому может отдать только один электрон, он, следовательно, в определенном отношении подобен щелочным металлам, которые равным образом отдают только один электрон. Однако Н сильно отличается от щелочных металлов и вообще от всех металлов тем, что его электрон сравнительно прочно связан (ср. с табл. 22). Благодаря этому Н оказывается неметаллом, несмотря на то, что в своих соединениях он большей частью положительно заряжен. Его расположение перед гелием, инертным газом с двумя электронами приводит к тому, что оп может быть также электроотрицательным. Чтобы приобрести конфигурацию инертного газа, ему нужно присоединить только один электрон. Благодаря этому и в согласии с свойственным ему неметаллическим характером, проявляюпршся также в его физических свойствах, водород, несомненно, стоит ближе к галогенам, чем к щелочным металлам. [c.154]

    Отсутствие справочного материала, связанного со свойствами изотопов, существенно снижает, по мнению редакторов, полезность первого издания книги, как источника информации. В связи с тем, что монография Изотопы свойства, получение, применение в значительной мере носит информационный, обзорный характер, было решено дополнить 2-е издание справочными данными, которые читатель найдёт в приложениях и на форзацах книги. В периодической таблице элементов приведены данные по распространённости стабильных изотопов, уточнённые профессором A.B. Тихомировым (Курчатовский институт). Группой сотрудников ОИЯИ под руководством профессора Ю.П. Гангрского были подготовлены таблицы свойств ядер вблизи линии стабильности. Из ряда справочников Физические величины под редакцией академика И. К. Кикоина и других систематизированы и собраны воедино данные по физическим свойствам элементов, важные для понимания изотопных явлений. [c.9]

    Фосфористые водороды. Как простое вещество фосфор яе проявляет, как мы убедились, никаких, сходств с азотом ни в формах своих аллотропных модификаций, ни тем более в их физических и химических свойствах. Фосфор представляется нам при прямом сличении с азотом скорее его анггиподом, чем аналогом. Это впечатление лишь еще более укрепляетс я при сличении кислородных соединений обоих элементов одинаковыми в них оказываются лишь валентности, но не формы и не свойства йи их окислов, ни гидратов окислов. Химическую родственность фосфора с азотом заведомо нельзя было бы установить через непосред-< твенное, прямое сличение обоих элементов, а лишь опосредствованно— -через периодический закон. Естествершо, что при первоначальных эмпи-рических группировках элементов никто никогда не помещал фосфор рядом с азотом. Если судить о химических элементах по свойствам как отвечающих им простых веществ, так и образуемых ими соединений с тем или иным третьим элементом, то на первый план выступит сходство фосфора не с азотом, а с соседним с фосфором элементом периодической таблицы — серой.  [c.353]


Смотреть страницы где упоминается термин Периодическая таблица и физические свойства: [c.118]    [c.50]    [c.102]    [c.105]    [c.38]    [c.274]    [c.8]    [c.88]   
Общая химия (1979) -- [ c.105 , c.106 ]




ПОИСК







© 2025 chem21.info Реклама на сайте