Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород, определение газовой хроматографией

    В литературе тенденцию к автоматизации иллюстрируют обычно примерами спектрометрических приборов с непосредственной выдачей результатов и автоматических анализаторов. Однако не менее полезные устройства используются в более ограниченных типах анализов. Например, предложено несколько различных устройств для одновременного определения углерода, водорода и азота в органических соединениях. В одном из таких приборов образец сжигают в кислороде и продукты сгорания вводят в газовый хроматограф. Разделенные компоненты последовательно регистрируют катарометром содержание элементов определяют из отношения площадей пиков, зарегистрированных самописцем. [c.544]


    Определение углерода и водорода методом газовой хроматографии, [c.166]

    Определение водорода методом газовой хроматографии с применением гелия в качестве газа-носителя. [c.66]

    Определение связи бор — водород посредством газовой хроматографии на химически активных колонках. [c.100]

    Разделение и определение гелия и водорода посредством газовой хроматографии. (Испытаны различные адсорбенты и газы-носители.) [c.7]

    Определение цианистого водорода посредством газовой хроматографии. (НФ ПЭГ-1500 на целите или хромосорбе. Для постоянных газов — мол. сито 5А.) [c.11]

    Определение радиационного выхода водорода методом газовой хроматографии. (Адсорбент — активированный уголь детектор катарометр газ-носитель Nj, чувствительность определения 5-10 моля.) [c.171]

    Газовая хроматография. Эта хроматография представляет собой один из вариантов распределительной хроматографии. Одной из ее разновидностей является газожидкостная хроматография. Неподвижной фазой служит нелетучая жидкость (глицерин, поли-этиленгликоль, ланолин и др.), которой пропитывают твердый порошкообразный адсорбент (активированный уголь, целит, специальный огнеупорный кирпич и т. п.) до такой степени, чтобы он оставался на ощупь сухим и легко продувался газом. Таким адсорбентом, содержащим неподвижную жидкую фазу, равномерно заполняют колонку — стеклянную или медную трубку диаметром примерно 0,5 см и длиной до 20 м. Роль подвил<ной фазы выполняет какой-либо газ (водород, гелий, аргон, азот), в который вносится разделяемое вещество также в виде газа или пара. Полученная смесь газов подается в колонку под определенным давлением и при низкой температуре. Разделение смесей на компоненты происходит в общем так же, как и в случае адсорбционной хроматографии в колонке при выделении растворенных веществ. [c.173]

    Для определения концентрации веществ, выдуваемых газовым потоком из хроматографической колонки, разработано множество детекторов. Наиболее употребительным детектором является катарометр, действие которого основано на измерении теплопроводности вытекающего из колонки газа (появление примеси анализируемого вещества изменяет теплопроводность газа-носителя). Другой, не менее широко распространенный детектор — пламенно-ионизационный. Появление в газе-носителе примеси анализируемого вещества вызывает изменение электропроводности пламени водорода, горящего в токе воздуха или кислорода на выходе из колонки. Пламенно-ионизационный детектор обладает в несколько сот раз большей чувствительностью, чем катарометр, однако при его применении требуется подключение к прибору двух дополнительных баллонов со сжатым газом (водород и воздух). В газовой хроматографии на колонках одинаковой длины, заполненных одинаковым сорбентом, при одинаковых температурах и скорости газа-носителя (эти условия легко соблюсти) каждому веществу соответствует строго определенное время выхода на хроматограмме. Площадь хроматографического пика пропорциональна содержанию этого вещества в смеси. [c.126]


    Прибор для определения углеродного скелета молекулы схематически показан на рис. П.З. Трубку с горячим катализатором устанавливают в газовом хроматографе непосредственно перед его входным устройством. В хроматографе применяют пламенноионизационный детектор, а в качестве газа-носителя — водород. Температура катализатора (палладий или платина на газохроматографическом носителе) поддерживается обычно в пределах [c.434]

    Определение газов. Определение водорода, кислорода и азота в металлическом хроме проводят методами вакуум-плавления [848, 858], изотопного разбавления [322], спектрального [11, 406, 474] и активационного анализа [596, 698, 1005]. Описаны [461] различные методы определения газов в хроме. Методы опре-. деления азота в хроме детально описаны в [84]. Метод вакуум-плавления определения кислорода и азота основан на плавлении образца в графитовом тигле при высоком вакууме выделяющиеся газы собирают и анализируют. Для анализа наиболее целесообразно использовать методы газовой хроматографии [284, 858] они позволяют достигать высокой чувствительности даже при анализе проб газов малого объема. [c.180]

    Схема установки для газовой хроматографии приведена на рис. 331. Газ-носитель, обычно водород, гелий или углекислый газ, поступает из баллона 1 с вентилем через вентиль тонкой регулировки скорости газового потока 2 в газовую колонку 4. На пути газа в колонку в блоке 3 при помощи шприцев-пипеток или стеклянных ампул в газ вводится определенное количество, до [c.536]

    Элементный анализ. Разработаны многочисленные варианты хроматографического метода определения углерода, водорода, азота, кислорода, серы, галогенов и некоторых других элементов. По точности эти методы приближаются к классическим, но значительно менее трудоемки и превосходят их по экспрессности. Представленные в таблице варианты определения углерода и водорода иллюстрируют гибкость метода реакционной газовой хроматографии. [c.6]

    Некоторые варианты определения углерода и водорода с применением газовой хроматографии [c.7]

    Нами установлено, что еще большие возможности открываются при сочетании газовой хроматографии с другими физико-химиче-скими методами. Так, при определении углерода, водорода и азота наиболее целесообразно сочетание метода газовой хроматографии с кулонометрией [16, 17], а одновременное определение серы и галогенов наиболее удачно при сочетании газовой хроматографии с кондуктометрией. [c.31]

    Для одновременного определения трех элементов — углерода, водорода и азота в разнообразных органических веществах используются газовая хроматография и кулонометрия в сочетании с окислением органического вещества в герметически закрытой кварцевой пробирке. [c.34]

    В последнее время метод газовой хроматографии все чаще находит применение при определении элементного состава соединений. Рядом фирм [1—4] налажен серийный выпуск хроматографов, позволяющих проводить анализ жидких и твердых органических соединений на углерод, водород и азот с погрешностью, не превышающей 0,3 абс.% для каждого элемента. [c.43]

    В Институте органической химии им. Н. Д. Зелинского АН СССР разрабатывается метод газо-жидкостной хроматографии в парах воды или кислот, открывающий возможность прямого анализа природных и сточных вод на органические примеси. Здесь же проводятся работы по циркуляционной газо-жидкостной хроматографии, позволяющей повысить эффективность разделений за счет большого числа последовательно осуществляемых циклов хроматографирования одной пробы. В Институте элементоорганических соединений АН СССР разработан способ разделения многокомпонентных смесей аминокислот, в том числе их оптических изомеров. Большой вклад в реакционную газовую хроматографию внесен Институтом нефтехимического синтеза им. А. В. Топчиева АН СССР. Газо-жидкостная хроматография используется и как способ окончания автоматического элементного анализа (работы Института биоорганической химии им. М. М. Шемякина АН СССР). Этот метод позволяет также автоматизировать определение активного водорода и другие приемы функционального анализа. [c.131]

    Для определения сульфатов применяют метод газовой хроматографии. Предложен метод определения сульфата, основанный на его восстановлении до сульфида при помощи 20%-ного раствора гпСЬ в концентрированной ортофосфорной кислоте при 250—317 °С [209]. Образующийся НгЗ направляется газом-носи-телем (водородом) в газовый хроматограф на колонку длиной [c.554]

    Определение хлорборанов, диборана и хлористого водорода методом газовой хроматографии, (Т-ра от —195° до комнатной НФ силикон к-гексадекан с примесью B I3 сорбент хромосорб, длина колонки 100 см.) [c.13]

    Впоследствии на линии подачи воды в реактор был установлен регулирующий клапан с дистанционным включеиием из операторного помещения, а средства автоматического регулирования расходов метан-водородной и этан-этиленовой фракций были усовершенствованы. Перед холодильником были установлены сепараторы была смонтирована система блокировок, отключающая подачу метан-водородной фракции при прекращении поступления этан-этиленовой фракции и завышениях температуры в реакторе установлена звуковая и световая сигнализации на все возможные отклонения от нормального режима для определения концентрации водорода в газовой смеси, поступающей на гидрирование, был дополнительно установлен поточный хроматограф были смонтированы приборы регистрации перепада давлений в холодильнике и регулирования режима в реакторе при минимальных нагрузках. [c.335]


    Методом определения равновесных концентраций, а следовательно и термодинамической устойчивости пространственных изомеров, является равновесная конфигурационная изомеризация, проводимая в токе водорода в присутствии катализаторов — металлов VIII группы. В литературе описаны современные методы проведения этого эксперимента с использованием микрореактора, включенного в линию газового хроматографа [12, 16, 17]. [c.11]

    В конце 1950—начале 1960 годов начали интенсивно ра.ишваться электрохимические и физические методы определения углерода и водорода в продуктах сгорания органических соединений кондуктомет-рия, термокондуктометрия, кулонометрия, ИК-спектроскопия и другие методы. Однако наиболее жизнеспособным оказалось сочетание газовой хроматографии с термокондуктометрией, потому что это позволило проводить одновременное определение водорода. углерода и азота, которые входят в состав большого количества органических соединений. [c.815]

    Для ускорения количественного превращения эфиров в производные с целью их последующего ГХ-анализа широко используют переэтерификацию, особенно метанолиз. Весь процесс требует немного времени и позволяет отказаться от использования концентрированной щелочи, которая может вызывать частичную изомеризацию полиненасыщенных кислот. Для проведения метанолиза на эфир действуют метанолом, содержащим кислоту или основание в результате образуется метиловый эфир соответствующей кислоты. Для определения метиловых эфиров жирных кислот, полученных из липидов [47] и эфиров воска [48], использовали метанольный раствор хлористого водорода. При анализе эфиров, полученных из воска, спирты и метиловые эфиры разделяли с помощью колоночной хроматографии, а затем уже анализировали методом ГХ, причем спирты определяли в форме трифторацета-тов. Для определения метиловых эфиров жирных кислот от Си до Сго, выделенных из липидов сыворотки человека [49], использовали метанол и серную кислоту еще одним реагентом для анализа липидов является ВСЬ в метаноле [50]. В работе [51] описан удобный метод получения производных при комнатной температуре и без выпаривания. В этом методе раствор жира в бензоле переносят в закрытую колбу, добавляют в колбу 2,2-диметокси-пропан (ДМП), метанольный раствор хлористого водорода и оставляют на ночь. После нейтрализации порцию полученного раствора вводят в газовый хроматограф. Кроме пиков метиловых эфиров на получаемой хроматограмме присутствуют и пики изо-пропилиденгликоля, образованного из ДМП и глицерина. Эти пики являются удобными стандартами для определения времен удерживания. ДМП связывает воду и способствует тем самым полному прохождению реакции. [c.141]

    Кроме этого, азот в органических соединениях определяли и методом Кьельдаля с Сп804 в качестве катализатора. Образующийся сульфат аммония разлагали в кипящей серной кислоте в присутствии платиновой черни собирали выделяющиеся газы в шприцы объемом 20 мл и для определения азота вводили их в потоке водорода (газ-носитель) в газовый хроматограф с ката-эометром [59]. В работе [60] описан систематический анализ, имеющий целью различить 14 азотсодержащих функциональных групп молекул органических соединений. В этом анализе используются различные комбинации реакций разложения анализируемых соединений с измерением методом ГХ скорости образования газо- [c.297]

    Арсин. Для определения микропримесей некоторых летучих гидринов в арсине используются методы газовой хроматографии 1103, 122]. В работе [103] описано определение силана, германа, сероводорода, фосфина и водорода с использованием колонки, заполненной диатомитовым кирпичом, содержащим 25% силиконовой жидкости ПФМС-4. Для определения силана, германа, этана, этилена и фосфина используют колонку с окисью алюминия, содержащей 12% силиконовой жидкости ВКЖ-94Б. С примене- [c.204]

    В газовой хроматографии подвижную фазу рассматривают как инертную считается, что она не вступает во взаимодействие ни с веществом, ни с неподвижной фазой. Следовательно, природа подвижной фазы — газа не оказывает влияния на процессы распределения или адсорбции — десорбции и газ-носитель не влияет на селективность. Его влияние на хроматографический процесс сказывается через эффективность колонки, котофая зависит от разницы в скоростях диффузии веществ в газах [член В уравнения Ван-Деемтера (1.53)]. Природа газа-носителя влияет на продолжительность анализа, поскольку оптимум скорости потока различен для разных газов и время удерживания уменьшается с уменьшением коэффициентов диффузии, вещества. Оказывает влияние также и определенное ограничение давления, обусловленное разницей вязкости газов. Принимаются во внимание и такие обстоятельства, как стоимость газа, его чистота, безопасность и обеспечение максимальной чувствительности используемых детекторов. Исходя из этого в газовой хроматографии используют ограниченный набор газов азот, водород, аргон и гелий. [c.114]

    Для определения первичных и вторичных аминогрупп методом ГХ применяли цианэтилирование продукты реакции цианэтили-рования остаются в колонке, а измеряют количество непрореагировавшего акрилонитрила [49]. Функциональную алкиминогруппу определяли путем образования четвертичного иодида аммония под действием иодистоводородной кислоты и последующего пиролиза образовавшегося четвертичного иодида аммония до алкилиодида. Алкилиодиды отгоняли от реакционной смеси и направляли в газовый хроматограф для определения [50]. Чувствителен к аминам и амидам ГХ-анализ на активный водород (см. гл. 8, разд. II). В результате полного метилирования третичных аминов (реакция Гофмана) образуются соответствующие олефины продукты этой реакции хорошо разделялись методом ГХ и были пригодны для количественного анализа [51]. [c.296]

    Результаты экспериментального исследования адсорбции моно- и яолигалогенпроизводных углеводородов, помимо значения для идентифицирования в аналитической газовой хроматографии, необходимы для дальнейшего развития мо.лекулярно-статистической теории адсорбции и межмолекулярных взаимодействий. Эти результаты можно использовать для полуэмпирического определения модели атом-атомной потенциальной функции межмолекулярного взаимодействия атом галогена (в соответствующих производных углеводородов) — атом углерода в графите. Такое определение потенциальных функций межмолекулярного взаимодействия атом углерода углеводорода — атом углерода графита и атом водорода углеводорода — атом углерода графита сделано в гл. X. [c.197]

    Фогель и Куаттрон [297 ] использовали метод газовой хроматографии для определения углерода и водорода в органических соединениях. Пробы массой 8—11 мг окисляли кислородом в латунной бомбе. Диоксид углерода и воду разделяли при 104 °С на колонке с додецилфталатом, нанесенным на диатомитовую землю. Результаты анализа пяти проб дали среднее значение относительного стандартного отклонения 0,005. [c.320]

    Пьезоэлектрический метод использован также в анализаторе для определения отношения водород — углерод в углеводородах [157]. Смеси углеводородов (например, и-бутана, и-пентана, пен-тена-1) разделяют методом газовой хроматографии на колонке со скваленом и окисляют полученные компоненты кислородом в токе гелия при температуре пламени около 650 °С. После сжигания углеводородов поток окисленных продуктов разделяют на две части одну пропускают над кристаллом кварца, колеблюш,имся с частотой 9,000 МГц, который поглощает воду последовательно из бутана, пентана и пентена. Другую часть потока осушают хлористым кальцием и пропускают над вторым кристаллом кварца, колеблющимся с той же частотой и поглощающим диоксид углерода. Частота колебаний каждого кристалла кварца уменьшается пропорционально количеству поглощенных воды или диоксида углерода каждая из этих двух частот накладывается порознь на фиксированную частоту эталонного генератора — 9,001 МГц, в результате чего образуются три различных дифференциальных частоты. Полученные данные непрерывно регистрируются, и расчет соотношений водород — углерод производится автоматически. В качестве материалов для покрытия кристалла, сорбирующего воду, Сэнфорд и сотр. [157] использовали силикагель, оксид алюминия, природные и синтетические смолы для сорбции диоксида углерода эти авторы применяли полярные вещества, например полиэтиленгликоль. [c.587]

    В настоящее время одшми из перспективных методов анализа является газовая хроматография, которая позволяет проводить анализ многих неорганических веществ в самых различных смесях и агрегатных состояниях, имеющих температуры кипения от -150 до +200"С[ 3, 4]. Однако хроматографический анализ сероводорода, цианистого водорода, диоксида углерода и аммиака, особенно их водных растворов, является сложной задачей, поскольку разделяемые вещества имеют различный характер и обладают высокой реакционной способностью. Кроме того, преобладающее содержание воды в анализируемых пробах затрудняет определение некоторых компонентов, в частности аммиака, который при использовании большинства сорбентов плохо отделяется от воды. [c.61]

    В последнее время метод газовой хроматографии находит применение в органическом элементном анализе [1—5]. Нам кажется возможным и целесообразным одновременное микроопределение углерода, водорода и фтора во фторсодержащих органических веществах методом газовой хроматографии. Конечными продуктами являются СО2, 81 Рд и Н2О, конвертируемая в С2Н2. Нами разработаны условия хроматографического разделения и количественного определения компонентов этой смеси. [c.41]


Смотреть страницы где упоминается термин Водород, определение газовой хроматографией: [c.363]    [c.274]    [c.125]    [c.296]    [c.436]    [c.77]    [c.436]    [c.324]    [c.381]   
Методы общей бактериологии Т.3 (1984) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая

Хроматография определение

Хроматография определение газовая



© 2025 chem21.info Реклама на сайте