Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пути превращения глицина

    Вернемся еще раз к свойствам аминогруппы глицина она проявляет более сильные основные свойства (более высокое значение рКа), чем обычный органический амин. Можно ожидать, что единичный отрицательный заряд карбоксильной группы приведет к повышению электронной плотности на аминогруппе и что электростатическое притяжение (эффект ноля) между аммоний-катионом и карбоксилат-апионом затруднит отрыв протона от аммонийной группы. Это действительно так, и оба эффекта играют важную роль. Тем не менее рКа аминогруппы глицина равен 9,60, тогда как у метиламина 10,64 (табл. 2.1). Это происходит потому, что наиболее важным, или определяющим, эффектом является оттягивание электронов карбоксильной (карбонильной) группой. Так, если нейтрализовать весь заряд карбоксильной группы путем превращения ее в амид, то рКа аминогруппы глициламида равен 8,0, а для глицилглицина 8,13. При этом не возможны ни повышение электронной плотности карбоксилат-ани-оном, ни эффект поля (электростатическое влияние) единственным эффектом остается оттягивание электронов амидной карбонильной группой. Отметим, что этерификация аспарагиновой и глутаминовой кислот аналогичным образом влияет на свойства полученных соединений (табл. 2.1). Аминогруппы диэтиловых эфиров обладают кислыми свойствами. [c.40]


    Другая катаболическая реакция треонина [уравнение (14-29), стадия б]—это расщепление на глицин и ацетальдегид, катализируемое серин-оксиметилтрансферазой [уравнение (8-19)]. Третьим и количественно более существенным путем является дегидрирование [уравнение (14-29), стадия в] и декарбоксилирование с образованием аминоаце-тона [уравнение (14-29), стадия г]. Аминоацетон выводится с мочой, но он может также быть окислен [уравнение (14-29), стадия д] в ме-тилглиоксаль, который может подвергаться превращению в D-лактат под действием глиоксилазы (гл. 7, разд. Л). Аминоацетон служит также источником 1-амино-2-пропанола при биосинтезе витамина Bis (стадия е, дополнение 8-Л). Было постулировано, что метилглиоксаль является природным регулятором роста, препятствующим чрезмерной пролиферации клеток у животных [63 ]. [c.114]

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]

    Если образование глицина из глиоксилата происходит путем переаминирования, то обратное превращение избытка глицина в глиоксилат, может осуществляться с помощью оксидазы аминокислот (табл. 8-4). [c.120]

    Количество данных, касающихся биосинтеза аминокислот, очень велико, но о ранних стадиях биосинтеза известно меньше, чем о более поздних. Современные представления о механизмах превращения газообразного азота в аммиак у растений изложены в специальной монографии [1]. Миллер [2] сделал очень интересную попытку подойти к решению проблемы первичного образования органических веществ на земле он показал образование аминокислот (глицин, саркозин, ОЬ-аланин, р-аланин, ОЬ-а-аминомасляная кислота и а-аминоизомасляная кислота), а также других соединений (молочная, муравьиная и уксусная кислоты) в системе, содержащей метан, аммиак, водород и воду. Эту смесь, близкую к предполагаемому составу земной атмосферы на ранних стадиях ее образования, подвергали в течение недели и дольше воздействию электрических разрядов. Было найдено, что аминокислоты образуются путем гидролиза нитрилов последние в свою очередь возникают в результате реакции между альдегидами и синильной кислотой, образующимися под действием электрических разрядов. Миллер высказал любопытное предположение о возможном синтезе первых живых организмов из аминокислот и других соединений, образовавшихся в результате взаимодействия между альдегидами, синильной кислотой и аммиаком в первичном океане. [c.307]


    Пути превращения глицина [c.198]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]

    Серин легко превращается в пируват под действием сериндегидратазы. В связи с этим в тканях имеются условия для превращения глицина (через серин) в пируват. Этим путем осуществляется участие глицина в обмене углеводов. Важную роль играет серин в биосинтезе сложных белков — фосфопротеинов, а также фосфоглицеридов. Помимо фосфатидилсерина, углеродный скелет и азот серина используются в биосинтезе фосфатидилэтаноламина и фосфатидилхолина (см. главу 11). [c.453]

    Аминокислоты, получающиеся в результате полного гидролиза белка, представляют собой оптически активные соединения (если гидролиз не сопровождается рацемизацией). Все выделенные из хорошо известных белков аминокислоты имеют одну и ту же конфигурацию, т. е. одинаковое пространственное расположение четырех радикалов у сс-углеродного атома, хотя одни аминокислоты являются правовращающими, другие — левовращающими. Все аминокислоты, встречающиеся в природе, относятся к -ряду. Их взаимная связь доказывается путем превращения в идентичные производные [70]. В некоторых алкалоидах спорыньи и бактериальных токсинах найдены оптические стереоизомеры этих природных аминокислот — неприродные -аминокислоты (см. гл. XV) [70]. Глицин оптически неактивен, так как он не содержит в своей молекуле асимметрического углеродного атома. [c.35]

    Второй путь превращения арахидоновой кислоты—липоксигеназ-ный путь (рис. 8.4) — отличается тем, что дает начало синтезу еще одного класса биологически активных веществ—лейкотриенов. Характерная особенность структуры лейкотриенов заключается в том, что она не содержит циклической структуры, хотя лейкотриены, как и простаноиды, построены из 20 углеродных атомов. В структуре лейкотриенов содержатся четыре двойные связи, некоторые из них образуют пептидолипвдные комплексы с глутатионом или с его составными частями (лейкотриен D может далее превращаться в лейкотриен Е, теряя остаток глицина). Основные биологические эффекты лейкотриенов связаны с воспалительными процессами, аллергическими и иммунными реакциями, анафилаксией и деятельностью гладких мышц. В частности, лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, регулируют тонус сосудов (оказывают сосудосуживающее действие) и стимулируют сокращение коронарных артерий. Катаболические пути лейкотриенов окончательно не установлены. [c.286]

    Пока трудно сказать, идет ли превращение дициана в глицин внутри-сферно или по иному механизму. Вне зависимости от этого превращение дициана в глицин могло быть важным этапом на пути образования белковых веществ на Земле. [c.359]

    Установлено, что треонин в организме косвенным путем участвует в ряде превращений, свойственных глицину. Он используется для синтеза пирроловых ядер протопорфирина, синтеза холестерина, жирных кислот, углеводов. [c.368]

    У О1р1ососсиз gly inophilus наблюдали анаэробное превращение глицина в уксусную кислоту. На основании опытов с изотопами полагают, что при этом происходит конденсация двух молекул глицина с последующим отщеплением карбоксильных групп [142]. Один из штаммов АскготоЬас1ег окислял глицин с образованием аммиака и перекиси водорода [143]. Этот путь превращения глицина, по-видимому, аналогичен процессу его окисления в тканях млекопитающих с образованием глиоксиловой и муравьиной кислот в качестве промежуточных продуктов (см. также [144]). [c.322]

    Определяя радиоактивность СОг, выделившегося на различных стадиях деградации, можно судить, в какое положение внедрялся С. Опыты с глицином, меченным С, показали, что углерод метиленовой группы глицина внедряется в положения 4, 9, 14, 16 колец А, В, С м О порфинового ядра и образует, кроме того, все четыре метеновых мостика, но карбоксильная группа глицина не участвует в образовании порфирина. Остальные двадцать шесть углеродных атомов молекулы протопорфирина образуются из метильной и карбоксильной групп уксусной кислоты однако из распределения активности в молекуле протопорфирина видно, что уксусная кислота участвует в биосинтезе порфиринов в виде какой-то четырехуглеродной единицы. Как было показано, такой четырехуглеродной единицей является янтарная кислота, возникающая из ацети кофермента А в цикле трикарбоновых кислот (см. стр. 399). Лимонная и а-кетоглутаровая кислоты, лежащие на пути превращения уксусной кислоты в янтарную в этом цикле, таким образом, также участвуют в биосинтезе порфиринов. [c.143]


    Катаболизму глицина в нервной ткани посвящено большое количество исследований. В настоящее время доказано, что существует по меньшей мере три пути катаболизма глицина в ЦНС. Прежде всего, превращение серин глицин легко обратимо в ткани мозга, и серингидроксиметилтрансфераза может выступать в качестве энзима деградации глицина. [c.194]

    С помощью дейтерия и тяжелого азота Шенгеймером были выяснены пути образования и превращений креатина в организме. Путем введения в нищу животного разных аминокислот, меченных дейтерием в N1 , было установлено, что для образования креатина мышц нужны три из них. Глицин дает креатин с в аминогруппе (но не в амидиновой) аргинин доставляет амидиновую группу с в ней, а метионин вводит метильную группу, меченную дейтерием. На основании этих данных была установлена следующая схема синтеза креатина с промежуточным образованием гликоциамина, превращение которого в креатин также было доказано экспериментально  [c.316]

    Применение изотопного метода позволило выявить различные стороны превращения глицина в организме. Оказалось, что глицин участвует в процессах обезвреживания бензойной кислоты путем синтеза гиппуровой кислоты (стр. 364) и в образовании парных соединений с желчными кислотами (стр. 329). Он может дать начало образованию ряда соединений муравьиной и уксусной кислотам, этаноламину, серину, производным пурина и пор-фиринам. Благодаря этому глицин связан с обменом углеводов и жиров (через уксусную кислоту), с обменом серина, нуклеотидов и нуклеиновых кислот (участвуя в синтезе производных пурина) и с обменом гемоглобина (как предшественник протопорфирина). Кроме этого, глицин участвует в синтезе важных в физиологическом отношении веществ — креатина и глютатиона. [c.365]

    Когда было показано существование цикла, ведущего к постоянному превращению ацетата в глиоксиловую кислоту (фиг. 11), возник вопрос, как будут расти бактерии, если вместо ацетата они будут получать одну лишь глиоксиловую кислоту. Это имеет место, когда бактерии растут в среде с глицином [67], гликолевой [68] или щавелевой [69] кислотой в качестве единственного источника углерода, так как на начальных стадиях метаболизма каждый из этих субстратов превращается в глиоксиловую кислоту путем дезаминирования, окисления или восстановления. В этом случае метаболический процесс сводится к превращению глиоксиловой кислоты в фосфоенолпировиноградную в ходе реакций, показанных на фиг. 12. После того как образование фосфоенолпирувата произойдет, дальнейшие его превращения могут пойти, по анаплеротиче-ским путям либо в результате фиксации СО2 образуется щавелевоуксусная кислота, либо фосфоенолпируват превращается в пируват и затем в ацетилкофермент А, который при взаимо- действии с глиоксиловой кислотой образует яблочную кислоту. Данные о существовании последовательности, показанной на фиг. 12, были получены Г. Корнбергом и А. Готто [68], [c.40]

    В нервной ткани существует по крайней мере три пути катаболизма глицина. Первый состоит в том, что реакция превращения серина в глицин легко обратима в ткани мозга и серингидроксиметилтрансфераза может выступать в качестве энзима деградации глицина. Кроме того, в ЦНС представлены оксида-зы аминокислот (КФ 1.4.3.2, 1.4.3.3), которые могут использовать в качестве субстрата наряду с другими аминокислотами глицин  [c.57]

    При интерпретации данных, относящихся к процессу переноса аминокислот, больщое значение приобретает вопрос о состоянии аминокислот внутри клетки. Вполне очевидно, что поглощение той или иной аминокислоты клеткой может зависеть от концентрации аминокислоты в окружающей жидкости, от активности системы, переносящей аминокислоту в клетку, и от превращений, которым аминокислота подвергается в реакциях клеточного обмена. Различными способами удается извлечь из клеток свободные аминокислоты однако не исключено, что в неповрежденных клетках они находятся в связанной форме. Соответствующие связи могут быть сравнительно нестойкими и способными распадаться даже при мягких условиях экстракции. Между тем данные исследований Кристенсена [32—34] и Гайнца [35] указывают на то, что легко экстрагируемые из клеток аминокислоты существуют в клетках в виде свободных аминокислот. Для удержания глицина в тех высоких концентрациях, в которых он поглощается клетками асцитной опухоли, потребовались бы столь же высокие концентрации связывающего агента данных, указывающих на наличие подобного агента, до сих пор не получено. Наблюдения, показавшие, что вместе с аминокислотами в клетки поступает вода, также говорят в пользу присутствия в клетках свободных аминокислот. В опытах со свободными раковыми клетками наблюдалась прямая зависимость между градиентом концентрации глицина и увеличением содержания воды в клетках (осмотический эффект). Гайнц [35] в опытах на клетках асцитной опухоли исследовал кинетику поступления и выхода глицина в процессе переноса и нашел, что зависимость между скоростью притока глицина в клетки и концентрацией глицина в среде можно описать уравнением Михаэлиса — Ментена. Скорость поступления глицина не снижается и даже возрастает при предварительном насыщении клеток глицином. Автор приходит к выводу, что фактором, ограничивающим скорость поглощения глицина, служит связывание глицина с каким-то компонентом клеточной стенки. Полученные им результаты согласуются с представлением о наличии глицина в клетках в свободном состоянии и указывают на то, что выход глицина происходит главным образом путем диффузии. [c.168]

    Главный путь катаболизма глицина у позвоночных—это катализируемое глицинсинтазным комплексом превращение, в результате которого образуются СО2 и NH li, а метиленовая группа переносится на тетрагидрофолат с образованием N -, N -метилентетрагидрофолата. Эта обратимая реакция (рис. 31.6) напоминает превращение пирувата в аце-тил-СоА ферментами пируватдегидрогеназного комплекса. Оба комплекса находятся в митохондриях печени и представляют собой макромолекулярные агрегаты. Реакция расщепления глицина протекает в печени большинства позвоночных, включая человека и других млекопитающих, а также птиц и рептилий. [c.322]

    Синтез глутатиона обсуждался ранее (стр. 268). Глутатион может синтезироваться из глицина, цистеина и глутаминовой кислоты с участием аденозинтрифосфата, а также путем реакции переноса [60]. Глутатион является коферментом глиоксалазы [61] и участвует в превращении 3-фосфоглицеринового альдегида в 3-фосфоглицериновую кислоту [62, 67]. Недавно установлено, что глутатион играет роль активного регулятора в реакции захватывания пищи у гидры [63]. [c.315]

    Включение глицина в серин может происходить путем реакции обмена с участием тетрагидрофолевой кислоты в качестве кофермента, без увеличения общего количества серина. Роль витамина Вб в этой реакции состоит в активировании а-углеродного атома глицина (стр. 246), реагирующего с оксиметилтетрагидрофолевой кислотой при расщеплении продукта реакции образуется серин. Саками [174] предложил для превращений одноуглеродных остатков следующую схему (см. также [203, 204])  [c.328]

    Ниже приюдится схема образования гликолевой кислоты и продуктов ее превращения, основанная на работах с высшими растениями. Путь от гликолевой кислоты к сахарозе через глицин, серии, глицериновую кислоту доказан многочисленными работами с использованием меченого углерода [c.266]

    За первым сообщением об изучении триметилсилильных производных аминокислот, появившимся в 1960 г. [188], последовало их систематическое исследование [189, 190]. Трудности, с которыми приходится сталкиваться при получении этих производных, обусловлены в основном низкой реакционной способностью аминогрупп и нестабильностью образующихся триметил-силазанов, которые весьма чувствительны к следовым количествам воды. Согласно данным Герке и сотр. [191, 192], воду лучше всего удалять в несколько приемов путем ее азеотропной отгонки с дихлорметаном. Сложность превращения аминогрупп в силильные производные, в результате которого образуется набор продуктов, стимулировала изучение действия разнообразных силилирующих агентов в различных условиях. Установлено, что в зависимости от условий реакции некоторые аминокислоты, а именно глицин, со-аминокислоты, аргинин, гистидин и триптофан, дают на хроматограммах двойные пики [189, 190, 192]. Глутаминовая кислота может образовать 2-пирролидон-5-карбо-новую кислоту. Хранение триметилсилильных производных аминокислот в присутствии силилирующих агентов в плотно закрытой посуде должно было бы обеспечить их устойчивость по меньшей мере в течение недели [191, 192], однако известно, что концентрация производных гистидина существенно уменьшается уже через 2 ч [194], а аргинин, у-аминомасляную кислоту, цитруллин, глутамин, гистидин, сульфоксид метионина и таурин вообще невозможно превратить в стабильные производные [183]. Поэтому, как показывает наш опыт, триметилсилильные соединения следует хроматографировать непосредственно после охлаждения реакционной смеси. [c.70]

    Выв еизложенная схема гликолатного пути усвоения СО установлена для высшх растений. В водорослях в атмосфере с радиоактивный углерод также быстро обнаруживается в гликолевой кислоте, в глицине и серине. Однако у некоторых водорослей не обнаружена гликолатоксидаза, имеющаяся у высших растений. Поэтому в соответственных условиях происходит сильное накопление гликолеюй кислоты. Пути ее дальнейших превращений блокированы из-за отсутствия этого фермента. Серин, как показывают данные по распределению и активности отдельных атомов [c.269]

    Задачу технического приготовления синтетического индиго приходилось формулировать так во-первых, возможно простое и дешевое приготовление фенилглицина или фенилглицин-о-карбоновой кислоты из аналина или антраниловой кислоты во-вторых, возможно гладкое и в то же время дешевое превращение названных глицинов в индоксил путем конденсации. [c.222]

    В противоположность млекопитающим, птицы выводят азот, главным образом, в виде мочевой кислоты. Применение тяжелого азота показало, что у голубей мочевая кислота образуется через пурины и не связана с цепью превращений креатина. Введение в пищу разных кислот, меченных тяжелым углеродом С , позволило Бухенену глубже проследить путц образования мочевой кислоты. Углеродные атомы 2 и 8 происходят из карт боксилов ацетатов, 4 — из карбоксила глицина, 5— из а- или р-углеродов лактатов и 6 — из СОз- С помощью меченого N1 было также установлено, что азот в положении 7 происходит из глицина. Эти результаты особенно интересны в связи с отсутствием достаточных сведений о путях образования пуринов в живых организмах. [c.319]

    Для оценки результатов исследований полезно остановиться на данных, полученных во второй половине XIX века по изучению превращений бензойной и фенилуксусной кислот, введенных в организм млекопитающих животных. Обе эти кислоты обладают некоторой токсичностью и в орга-низ. 1е подвергаются обезвреживанию путем связывания с глицином. Продукты связывания — гиппуровая и фенацетуровая кислоты — выделяются из организма с лючою [c.308]


Смотреть страницы где упоминается термин Пути превращения глицина: [c.577]    [c.320]    [c.331]    [c.492]    [c.391]    [c.100]    [c.55]    [c.176]    [c.284]    [c.499]    [c.636]    [c.638]    [c.641]    [c.339]    [c.260]    [c.51]    [c.267]    [c.192]    [c.50]    [c.323]   
Смотреть главы в:

Метаболические пути -> Пути превращения глицина




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глицин превращение

Глициния



© 2025 chem21.info Реклама на сайте