Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации генные случайные

    Каким образом увеличивался размер генома клеток при эволюции организмов от низших форм к высшим Изменения формы и поведения организмов обусловлены мутациями, меняющими последовательность аминокислот в белках. Однако такие мутации не могли увеличить количества генетического материала в процессе эволюции. Вполне возможно, что в ряде случаев в клеточное ядро случайно включалась копия одного илн нескольких генов [32а]. Тогда при наличии дополнительной копии гена клетка могла выжить, даже если в результате мутации в одном из парных генов нарушались структура и функция кодируемого им белка если парный ген оставался неповрежденным, организм был способен расти и размножаться. Дополнительный, несущий мутацию ген мог оставаться в нефункционирующем состоянии много поколений. До тех пор, пока этот ген продуцировал безвредные, нефункционирующие белки, он не элиминировался под давлением естественного отбора и со временем мог опять мутировать. Вполне возможно, что в конце концов белок, кодируемый этим многократно мутировавшим геном, оказывался в каком-то отношении полезным для клетки. [c.38]


    Мутации возникают случайным образом и спонтанно, т. е. любой ген может мутировать в любой момент. Частота возникновения мутаций у разных организмов различна. [c.209]

    К 1945 г. результаты этого анализа легли в основу гипотезы Один ген-один фермент . Согласно этой гипотезе, каждую метаболическую ступень катализирует отдельный фермент, за образование которого отвечает один ген. Мутация в гене может привести к потере активности соответствующего белка. Поскольку мутация- событие случайное и, следовательно, может повредить любой участок гена, то наиболее вероятно, что она нарушит функцию гена. Поэтому в результате большинства мутаций образуются нефункциональные гены. Однако это отнюдь не единственное последствие мутации в результате мутации иногда происходит не потеря функции, а ее изменение. [c.18]

    В настоящее время неизвестны частоты встречаемости белков с заданной вторичной, а тем более третичной структурами, среди набора полипептидов со случайными последовательностями аминокислотных остатков. Поэтому для поиска белковых молекул, обладающих требуемыми свойствами, необходимо использовать клонотеки очень большого размера, в идеале содержащие максимально возможное количество компонентов, с которым еще можно работать экспериментальными методами. Разнообразие в клонотеках нуклеотидных последовательностей, кодирующих исследуемые белки, создается введением в гены случайных мутаций. [c.322]

    Быстрое случайное мутирование, приводящее к различным измененным ДНК-последовательностям, и отбор среди них лучшей последовательности приводят к появлению направленных соматических мутаций — полной противоположности случайных мутаций. Играет ли эта соматическая генетическая изменчивость какую-нибудь роль в эволюции Точнее, можно спросить есть ли какие-нибудь свидетельства того, что приобретенные соматические мутации генов вариабельных областей могут вносить вклад в следующее поколение Другими словами, могут ли приобретенные соматические мутации наследоваться с ДНК половых клеток Может ли предполагаемая нами гомологичная рекомбинация приводить к переносу V-последовательности из В-лимфоцита в ДНК сперматозоидов или яйцеклеток  [c.147]

    Геном вирусов имеет простое строение и малую молекулярную массу. Число генов у вирусов колеблется от 4—6 (парвовирусы) до 150 генов и больше (вирус оспы). В основе изменчивости вирусов лежат мутации. Мутации носят случайный характер или могут быть направленными. Вирус, являясь облигатным внутриклеточным паразитом, реализует этот паразитизм на генетическом уровне. Присутствие нескольких типов вирусов в инфицированных клетках, т.е. смешанная инфекция, может приводить к таким генетическим взаимодействиям между ними, как множественная реактивация, рекомбинация, кросс-реактивация и др. могут иметь место и не генетические взаимодействия — комплементация и др. [c.89]


    Мы уже описывали геннЫ е мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, одна ко, Как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой му- [c.51]

    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Генная инженерия - целенаправленное изменение генов в составе молекулы ДНК с целью получения новых белков и пептидов. Когда мы говорим о мутациях, то рассматриваем изменения генов, которые происходят случайно или под влиянием различных факторов, часто весьма нежелательных. Но в хромосомах и генах постоянно происходят нормальные процессы обмена отдельными участками хромосом, отдельными генами, их переме- [c.60]

    Помимо описанного выще, для случайного мутагенеза используют и другие методы, например один из вариантов олигонуклеотид-направ-ленного мутагенеза с применением ДНК фага М13. В этом случае затравкой для синтеза ДНК служит смесь олигонуклеотидов, содержащих случайные замены. В результате получают библиотеки клонов, несущих множество мутаций в различных сайтах. Недостаток подходов, при которых в клонированном гене образуется больщое число случайных мутаций, состоит в необходимости тестирования каждого клона для идентификации того, который детерминировал бы синтез нужного белка. Это весьма непростая [c.167]

    Возможно, что при получении хромосомой определенной дозы облучения нехватки возникают не чаще, чем (случайные) генные мутации. Но поскольку нехватка включает несколько генов, определенный локус скорее будет затронут нехваткой, чем претерпит генную мутацию. [c.144]

    В генофонде данной скрещивающейся внутри себя популяции происходит непрерывный обмен аллелями между особями. Если частоты аллелей не изменяются в результате мутаций, то происходящая при таком обмене перетасовка генов ведет к генетической стабильности или к равновесию в генофонде. В случае возникновения мутантного аллеля он распространится по всему генофонду в результате случайного оплодотворения. [c.319]

    Конечно. Говорят, что трансген ( чужой ген, вставленный в геном растения) как-то влияет на здоровье человека. Это абсурд. Обыватель не понимает, что такое трансген, для него эЧ о что-то страшное. Между тем это просто механическая вставка. Выделенный ген, ответственный за определенный признак, вводится в культуру клеток, развивающуюся в питательной суспензии, которую затем наносят на крохотный кусочек растения, и из специальной пушки выстреливают им в лист. Очень тонкая и нежная процедура, но ничего сверхъестественного в ней нет. А что такое обычная селекция Это тоже изменение признака, определяемого тем или иным геном, только не целенаправленное (деликатной вставкой), а случайное, в результате мутаций под действием радиации, химических агентов и т. п. — грубых и небезопасных факторов. [c.75]

    Как естественный отбор, так и искусственная селекция базируются на случайной генетической ошибке — мутации и рекомбинации, за которыми следует неслучайное выживание. Разница лишь в том, что при искусственной селекции мы сами определяем возможности для скрещивания и выживания, а при естественном отборе это делает природа. Генная инженерия дополнительно осуществляет контроль над самими мутациями. Мы можем делать это или напрямую, переделывая гены, или импортируя их от других видов, зачастую весьма отдаленных. Это и означает слово трансгенные . [c.163]

    Второе объяснение, теория замороженного случая , предполагает, что структура кода сформировалась в результате случайных событий, но что после того, как установился смысл всех кодонов в исходной клетке, которая являлась общим предком всех ныне существующих организмов, дальнейшая эволюционная дивергенция кода стала невозможной. Эта) тео-рия согласуется с рассуждением, что любая мутация, изменяющая установленное соответствие кодона и аминокислоты, должна быть летальной. Действительно, если такая мутация возникнет в каком-нибудь организме, то все его гены, информация в которых записана с помощью прежнего кода, начнут направлять синтез всех белков с неправильными аминокислотами в соответствующих точках и большинство таких белков будут неактивными. [c.459]

    В свете этих данных становится понятно, почему мутации, уменьшающие сродство оператора к репрессору в 20-30 раз, приводят к конститутивному выражению генов оперона. В пределах генома мутантные сайты могут утратить преимущество в отношении случайных сайтов. Их специфическое сродство к репрессору по сравнению со случайными сайтами оказывается не настолько выраженным, чтобы они могли сохранять свой статус предпочтительных нуклеотидных последовательностей. [c.186]


    В настоящее время эта схема возникновения мутаций исследуется на основе двух программ. Первая из них анализирует характер распределения кластера мутаций на основе сравнения предполагаемых донорных и акцепторных последовательностей с использованием метода статвесов. Статвес для группы мутаций (см.рис.6) вычисляется следупцим образом W-L2-LI, где L2 и LI - правая и левая границы расположения кластера в полинуклеотидной последовательности. Результаты, полученные на основе этой программы, показаны на рисунке 6, где приведен пример выявления генной конверсии между геном и псевдогеном цыпленка. Анализ показал, что вероятность наблюдать такой кластер мутаций по случайным причинам - реал случ что явно свидетельствует в пользу генной конверсии, как возможного механизма возникновения мутаций в этой последовательности. Вторая программа выявляет наличие [c.98]

    Для понимания программ развития индивидуальных клеток эмбриона необходимо проследить их историю, проведя анализ клеточной родословной. Для генеалогии позвоночных характерна случайная изменчивость. Но у определенных нематод и некоторых других групп беспозвоночных схема клеточных делений в процессе развития контролируется настолько точно и настолько предсказуемо, что клетки, занимающие в теле животного определенное положение, у всех особей данного вида развиваются по одному и тому же пути. Была прослежена нормальная судьба всех клеток нематоды aenorhabditis elegans в течение всего периода развития и изучены последствия экспериментального воздействия на уровне индивидуальных идентифицируемых клеток. Идентифицированы многие гены, определяющие реализацию программы, контролирующей развитие клеток. Для этого были изучены изменения клеточных родословных, возникающие вследствие мутации данных генов. В общем можно отметить, что мутации генов, контролирующих развитие, координированно влияют на дифференцировку и деление клеток Эти наблюдения позволяют предположить, что контроль указанных клеточных процессов обеспечивается неким общим базовым ме- [c.96]

    Надо располагать определенной информацией о том, являются ли частоты этих кодонных мутаций репрезентативными в отношении большинства кодонов структурных генов. Например, должно быть известно, возникают ли мутации в этих генах случайно или некоторые сайты более мутабильны, чем другие. [c.188]

    Процесс необязательно должен произоити лишь однажды. Он может происходить раз за разом, так как случай подбрасывает новые благопри ятные мутации Более того, одно усовершенствование может наклады ваться на другое до тех пор (при условии, что времени достаточно), пока в процессе эволюции не разовьется новый организм, очень тонко настроенный на окружающую среду. Для того чтобы достигнуть такого совершенства исполнения, ему необходимы только мутации, возникшие случайно. По-видимому, здесь нет механизма, безусловно, нет общего механизма, который бы направлял изменение гена с тем, чтобы появля лись только благоприятные изменения. Более того, можно доказать, что подобный направляемый механизм, в конце концов, оказался бы слиш ком косным. Когда наступают слишком трудные времена, то необходимо новшество, важные отличительные особенности которого не могут быть заранее спланированы, и здесь мы можем полагаться только на случаи Случай — единственный источник подлинного новшества. [c.46]

    На первый взгляд кажется, что близкое сходство разных популяций по аллельному составу должно быть сильным доводом в пользу уравновешивающего отбора, потому что такое сходство не согласуется с тем, чего можно ожидать от случайного процесса. Если аллельные частоты — результат возникающих изредка мутаций, распространяющихся случайным дрейфом, то мы ожидаем, что две сравниваемые популяции будут иметь приблизительно одинаковую среднюю гетерозиготность, но полиморфные локусы в разных популяциях не будут одними и теми же и частоты отдельных аллелей в каждом данном локусе не будут связаны друг с другом. В том-то и состоит сущность процесса дрейфа, что отдельный аллель, встречающийся с высокой частотой в одной популяции, никак не связан с аллелем, преобладающим в другом месте. Однако наблюдения, изложенные в гл. 3, четко показывают, что одни и те же аллели имеют одинаковую частоту в разных популяциях. Если исключить боготскую популяцию и гены, ассоциированные с инверсиями в третьей хромосоме, частоты аллелей у D. pseudoobs ura замечательно сходны во всех исследованных популяциях от Калифорнии до Техаса и Гватемалы. То же сам[ое справедливо для D. willistoni и в разной степени для других обследованных организмов, в том числе для человека. [c.217]

    Традиционное, и в целом правильное, представление о генетических механизмах эволюции основано на главном предположении Чарлза Дарвина [I]. Он считал, что изменчивость между видами и в пределах вида определяется наследственными особенностями составляющих их особей. Орудующая в природе смерть-старуха забирает слабых и оставляет наиболее приспособленных. Именно этот процесс называется естественным отбором. В колоссальной предсуществующей изменчивости, часто едва заметной, можно обнаружить, например, различия между особями по размерам тела, пищевым потребностям или по способности избегать хищников. Наиболее приспособленные выживут и передадут свои признаки потомкам. Таким образом, естественный отбор действует на имеющуюся в популяции организмов наследственную изменчивость. В современной трактовке единственный тип генетических изменений, допускаемый в данной схеме, — это случайные мутации генов в половых клетках (яйцеклетках и сперматозоидах). Именно это составляет суть оставленного Чарлзом Дарвином наследия, изложенного в его книге Происхождение видов, опубликованной в 1859 г. Это — его вклад в современные представления о механизмах эволюции, приведшей к появлению высокоорганизованных растений и животных. Основы современной неодарвинистской теории суммированы в табл. 1.1. [c.21]

    Тем не менее в конце 1960-х—начале 1970-х гг. Мелвин Кон, а затем Элистэр Каннингем привели доводы в пользу того, что иммунная система имеет способность генерировать соматические мутации генов антител в ответ на внедрение чужеродных антигенов. По их мнению, по-видимому, выгодно, чтобы с ДНК зародышевой линии наследовалось только небольшое число необходимых генов, а новые могли бы возникать в течение жизни животного в виде соматических мутаций, вызванных антигеном. В то время, когда эта теория соматического мутирования была высказана впервые, она была оценена по достоинству только небольшим числом иммунологов. Большинство продолжало придерживаться мнения, что все антитела закодированы в генах половых клеток, то есть они предсущест-вуют до рождения животного. Это предполагало, что изменчивость является результатом случайных (редких) мутаций в генах клеток зародышевой линии, которые передаются потомкам. Без преувеличения можно сказать, что споры между приверженцами идеи соматических мутаций и мутаций в половых клетках были в центре внимания большинства наиболее важных работ. Они сыграли ту же роль, что и дискуссия в физике о кор-пускулярно-волновой двойственности в квантовой механике в 1920-х годах. Поэтому мы вынуждены объяснять основные молекулярные механизмы в контексте их исторических корней. [c.98]

    Один из способов получения мутаций у мышей состоит в том, что зародышей инфицируют ретровирусами, которые встраиваются в геном случайным образом. Если ретровирус включается в клетку, которая станет частью зародышевой линии, то он сохраняется в последующих поколениях. Используя этот метод, вы получили чрезвычайно интересную линию, в которой ретровирус, по-видимому, встроился в ген, имеющий решающее значение для раннего эмбрионального развития (рис. 14-12, 4). Важная роль этого гена выявляется в опытах по скрещиванию брат х сестра между гетерозиготами по ретровирусной вставке с последующим анализом ДНК от 12-дневных зародышей. Используя зонд, расположенный непосредственно около сайта встраивания, вы обнаруживаете три явно различающихся набора фрагментов гибридизации (рис. 14-12,5 ) набор 1 характерен для гомозигот [c.271]

    Спонтанные мутации возникают случайно, т.е. в любой. момент любой ген может претерпеть изменения. Причинами спонтанного мутационного процесса являются многочисленные факторы экзогенной и эндогенной природы, в том числе постоянное воздействие па организм человека мутагенов химической, биологической и физической природы (например, естественный фон облучения, действие вирусов) ошибки репликации ДНК, которые копируются и накапливаются в ряду клеточных поколений нарушение функционирования репаративных систем действие экзогенных метаболитов физи0 ю1ическ0е состояние и возраст организма. Спонтанные мутации могут возникать как в половых, так и в соматических клетках на генном, хромосомном и геномном уровнях. [c.125]

    Выше мы рассматривали генные мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, и это, несомненно, само по себе верно. Однако, как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой мутационной изменчивости, которая имеет важное значение для долговременного успеха данного вида в эволюции, может быть не целиком предоставлено воле случая, а инициироваться генами-мутаторами, Частота возникновения мутаций у данного вида частично может быть одним из генотипически контролируемых компонентов всей его генетической системы. [c.57]

    При исследовании модели репарационной коррекции было показано, что в II из 14 У-генов значение Р( реад " случ меньше 0.2Б. Вероятность такого события по случайным причинам в соответствии с критерием биномиального распределения равна 3.7 ip . Столь низкое значение вероятности является весолш аргументом в пользу этого механизма возникновения соматических мутаций. Однако, анализ индивидуальных мутаций показал, что этот механизм не объясняет возникновение всех наблюдаемых в этих генах соматических мутаций (141. [c.101]

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]

Рис. 8.7. Внесение случайных мутаций в клонированный ген. Вектор, несущий клонированный ген, расщепляют рестриктазами RE1 и RE2, в результате чего образуются один 3 - и один 5 -укороченные концы (и соответственно один 3 - и один 5 -выступающие концы). Затем его обрабатывают ферментом ЕхоТП, который расщепляет ДНК только с укороченного 3 -конца, удаляя по одному нуклеотиду. Через некоторое время реакцию останавливают и заполняют образовавщийся пробел с помощью фрагмента Кленова ДНК-полимеразы I Е. соИ. При этом в реакционную смесь добавляют все четыре дезоксинуклео-зидтрифосфата (dNTP) и в небольшом количестве -аналог одного из них. Обрабатывают продукт нуклеазой S1 для образования тупых концов, лигируют с помощью ДНК-лигазы Т4 и трансформируют клетки Рис. 8.7. Внесение <a href="/info/169050">случайных мутаций</a> в клонированный ген. Вектор, несущий клонированный ген, расщепляют рестриктазами RE1 и RE2, в результате чего <a href="/info/722787">образуются один</a> 3 - и один 5 -укороченные концы (и соответственно один 3 - и один 5 -выступающие концы). Затем его обрабатывают ферментом ЕхоТП, который расщепляет ДНК только с укороченного 3 -конца, удаляя по одному нуклеотиду. Через некоторое <a href="/info/25840">время реакцию</a> останавливают и заполняют образовавщийся пробел с помощью <a href="/info/200678">фрагмента Кленова</a> ДНК-полимеразы I Е. соИ. При этом в <a href="/info/26770">реакционную смесь</a> добавляют все четыре дезоксинуклео-зидтрифосфата (dNTP) и в <a href="/info/748834">небольшом количестве</a> -аналог одного из них. <a href="/info/1008518">Обрабатывают продукт</a> нуклеазой S1 для образования тупых концов, <a href="/info/1403759">лигируют</a> с помощью ДНК-лигазы Т4 и трансформируют клетки
    Генетики оказались перед выбором — либо не поверить данным Эвери, либо признать, что веществом наследственности оказался не белок, как принято было считать, а ДНК. Опровергнуть Эвери было трудно — в его работе просто-напросто не к чему было придраться. Но и от устоявшихся представлений о белковой природе гена отказаться ни за что не хотели. Опытам Эвери было дано следующее объяснение ДНК, конечно, никаких генов не содержит и содержать не может. Но она может вызывать мутации, т. е. изменять гены, которые, как им и положено, состоят из белка. Правда, ДНК оказалась весьма необычным мутагеном, вызывающим от опыта к опыту одни и те же мутации, в отличие от обычных мутагенов, которые вызывают мутации случайным образом, ненаправленно. Это не могло не заинтересовать генетиков, уже давно искавших способы направленного изменения наследственности. Так удалось спасти, казалось бы, уже испускавшую дух белковую теорию гена, но при этом генетики и все те, кто занимался проблемой химической (или физической) природы наследственности, вынуждены были, наконец, признать, что на ДНК следует обратить серьезное внимание. [c.18]

    А мы-то думали, мы были абсолютно убеждены, что весь план строения организма готов раз и навсегда, как только образовалась зигота. Мы думали, что этот план совершенно одинаков во всех клетках, просто одни клетки читают одну часть плана, другие — другую. Конечно, возможность мутаций в генах при развитии организма никем никогда не отрицалась, но к этому относились как к случайным помехам, ошибкам в ходе планомерного развития организма. А оказывается, каждый организм в ходе развития выраба- [c.86]

    Поскольку полиплоидия не сыграла существенной роли в эволюции гороха, изменчивость внутри рода в первую очередь оказалась связанной со структурными изменениями хромосом в геноме и носила характер различных генных мутаций и хромосомных аберраций типа реципрокных транслокаций [4-8 1, а также с обменом генетического материала в результате случайных скрещиваний [ll. Несмотря на отсутствие полиплоидов, виды гороха получили достаточно широкое распространение и хорошо приспособились к различным условиям обитания - включая суровые условия зон альпийской растительности и жаркий климат пус- [c.185]

    В серии сложных опытов фон Борстель [202, 203] изучал время гибели яиц, отложенных девственными самками наездника Вгасоп, гетерозиготными по хромосомным транслокациям. Эти самки откладывали нормально гаплоидные яйца. В процессе мейоза конъюгация хромосом, гетерозиготных по транслокациям, приводит к неравномерному распределению хроматина между мейоти-ческими ядрами. Вследствие этого примерно половина гамет имеет ядра с нехваткой части хромосомного плеча, и половина яиц от такой самки гибнет в результате отсутствия определенных блоков генов. При исследовании 27 различных транслокаций, характерных для случайного отбора проб утраченных блоков генов предположительно из разных частей хромосом, зародыши всегда гибли примерно на середине развития, когда они содержали до 50 тыс. ядер, и уже после того, как происходила эмбриональная дифференциация. Это указывает на то, что начальное развитие зародыша не зависит от наличия всех генов и что гаплоидный зародыш насекомого, образовавшийся из одного ядра с нехваткой довольно значительного блока генов, может дифференцироваться до довольно далекой стадии. Хадорн [80] также изучал фазы развития, когда сказывается влияние летальных мутаций. [c.122]

    Генная мутация может привести к тому, что в определенном локусе окажется несколько аллелей. Это увеличивает гетерозиготность данной популяции, делает более разнообразным ее генофонд и ведет к усилению внутрипопуляционной изменчивости. Перетасовка генов как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться. Что же касается генных мутаций, то некоторые из них увеличивают дискретную изменчивость, и это может оказать на популяцию более глубокое влияние. Большинство генных мутаций рецессивны по отношению к нормальному аллелю, который успешно вы- [c.213]

    Одним из самых ранних достижений человеческой цивилизации бьшо выведение сортов растений и пород домашних животньгх от диких предков. Отбирая особей, обладавших какими-либо желательными отклонениями, например более крупными размерами или более приятным вкусом и запахом, человек сохранял эти признаки путем искусственного разведения с применением избирательного размножения или опьшения. В результате непрерывной селекции человек создал породы домашних животных и сорта культурных растений, которыми мы располагаем сейчас. Как показывают археологические находки, человек проявил большое искусство в разведении крупного рогатого скота, свиней и домашней птицы и в выращивании зерновых культур и некоторых овощей. До того как стали известны работы Менделя, теоретические основы наследственности и отбора оставались неясными, однако это не ограничивало практические усилия человека. Если перейти на генетическую терминологию, то можно сказать, что человек сохраняет гены, желательные для достижения своих целей, и элиминирует те, которые его не устраивают. Производя отбор, он использует существующую в природе генетическую изменчивость, а также возникающие время от времени случайные мутации. [c.294]

    Что касается генетической опасности ионизирующей радиации, то появляется все больше данных о том, что многие мутации молут иметь небольшое доминантное вредное действие, которое для популяции может оказаться более тяжелым, чем смертельное влияние гомозиготных мутаций (Russel, Russel и Oakberg [2]). Поэтому при любой попытке оценить генетический эффект ионизирующей радиации вообще чрезвычайно важно получить данные о ближайшем помете облученных животных для того, чтобы определить характер вредных доминантных факторов. Весьма важно также применить близкородственное и случайное скрещивание, так как проявление рецессивного и доминантного генов можно опреде- [c.474]

    В лаборатории можно развести огромное число дрозофил, что дает возможность обнаружить большое разнообразие наследственных вариантов, или мутантов. К 1915 г. Морган и его сотрудники обнаружили 85 различных мутантных типов дрозофилы, отличающихся от мух нормального, или дикиго, типа размером крыльев, окраской тела, цветом глаз, размером глаз и формой щетинок. Каждый из этих мутантов обнаруживался как отдельный, отклоняющийся от нормы индивидуум среди потомства, состоящего из тысяч нормальных мух. Поэтому был сделан вывод, что каждому из этих отклонений от нормы (мутантный признак) мухи обязаны своим возникновением в результате редкой спонтанной мутации тою гена, который контролирует этот признак. (В 1927 г. Г. Мёллер, ранее работавший с Морганом, показал, что облучение мух рентгеновскими лучами сильно повышает частоту мутирования этих генов по сравнению с частотой спонтанных мутаций.) Наличие этих мутантов сделало возможным проведение обширных опытов по скрещиванию, которые были поставлены для того, чтобы еще глубже, чем это было возможно ранее, проникнуть в тайну механизмов наследственности. Скрещивания двойных мутантов, т. е. мух, несущих два мутантных гена в двух разных хромосомах, с нормальными мухами, несущими соответствующие аллели дикого типа, вскоре подтвердили результаты, полученные Менделем на горохе. Рецессивные признаки исчезали в первом дочернем поколении и вновь появлялись, но уже в случайном сочетании среди мух второго дочернего поколения. Но когда стали проводить подобные дигибридтые скрещивания с мухами, у которых оба мутантных гена находились в одной и той же [c.27]

    Роль избыточности нуклеотидных последовательностей у эукариотов до сих пор окончательно не установлена. В этой главе мы рассмотрим два частных случая, для которых смысл многократного повторения определенных генов понятен. Однако ни один из этих примеров не объясняет широкой распрсстраненности и высокой степени повторяемости нуклеотидных последовательностей в ДНК эукариотов. Бриттен предположил, что повторяющиеся последовательности отражают процесс эволюции. Согласно этому предположению, в зародышевой линии клеток исходного организма эукариотов происходит случайная многократная репликация определенной нуклеотидной последовательности хромосомы. Многочисленные копии этой последовательности затем передаются потомкам этого организма и в процессе такой передачи в них накапливаются мутации, которые были бы летальными, если бы этот организм содержал только одну копию данной псследовательности. [c.506]

    Полиморфизм длины фрагментов рестрикции. Если имеется подходящий ДНК-зонд, то можно обнаружить прямым методом некоторые генетические болезни, возникающие вследствие мутаций (гемофилия, мыщечная дистрофия и др.). Ответственный за болезнь, но неидентифицированный ген может быть обнаружен, если он находится вблизи последовательности ДНК, поддающейся определению. Во всем человеческом геноме примерно одно из 150 оснований является полиморфным, т. е. варьируется у разных индивидуумов. Каждое щестое из этих случайных изменений или порождает, или разрушает участок рестрикции. В результате этого потенциальные участки рестрикции присутствуют вдоль молекулы ДНК с интервалом примерно в 1000 пар оснований. Их наличие или отсутствие у разных людей приводит к тому, что ДНК в процессе рестрикции разрезается на фрагменты разной длины (полиморфизм длины рестрикционных фрагментов). Если при обследовании членов семьи обнаруживается взаимосвязь между полиморфизмом длины рестрикционных фрагментов и наследственным заболеванием, делается заключение, что данный участок рестрикции расположен вблизи от гена, ответственного за патологию. В таком случае присутствие данного типа полиморфизма можно использовать для предсказания наличия мутантного гена у другого члена семьи или в ткани плода. Однако использование этой техники для пренатальной диагностики требует предварительного обследования семьи. [c.528]


Смотреть страницы где упоминается термин Мутации генные случайные: [c.511]    [c.74]    [c.554]    [c.166]    [c.111]    [c.15]    [c.9]    [c.183]    [c.28]    [c.475]    [c.289]   
Эволюционный процесс (1991) -- [ c.59 ]




ПОИСК







© 2025 chem21.info Реклама на сайте