Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Столкновение резонансное

    Имеются по две резонансных линий у ксенона (1469,6 и 1295,6 А) и криптона (1235,8 и 1164,9 А). В действительности каждая из этих линий — дублет с расщеплением порядка 0,1 эв в том и другом случае. Излучательные переходы в основное состояние с каждого из этих нижних уровней запрещены. Как и в случае состояний Hg( Pi) и Hg( Po)- эти нижние состояния метастабильны и могут заселяться при дезактивации столкновениями резонансно испускающего состояния. [c.96]


    И если при этом первая частица — электрон, а вторая — молекула, то т1<Ст2 и, следовательно, при неупругом ударе р=1, т. е. вся энергия электрона может целиком перейти в энергию электронного возбуждения атома или молекулы. Опыт показывает, что такой переход подчинен квантовым законам. Он возможен только тогда, когда энергия ударяющего электрона равна той энергии, которая необходима для перевода электрона в молекуле из заданного в любое другое состояние, разрешенное квантовыми условиями отбора. Столкновения между электронами и атомами или молекулами, которые ведут к возбуждению атомов или молекул за счет кинетической энергии электронов, называются ударами первого рода. Франк и Герц исследовали столкновения электронов с атомами и на основании результатов исследований разработали удобные методы определения резонансных, критических и ионизационных потенциалов атомов. [c.75]

    Если все резонансы горючего узкие по сравнению со средней потерей эпергии при столкновении с атомом горючего, то при оценке эффективного резонансного интеграла асимптотическую форму. ту (10.110) мон но использовать повсюду. [c.491]

    При установлении двух эквивалентных выражений (10.139) и (10.142) было использовано рациональное приближение (10.132). Эти выражения справедливы лишь в случаях, когда ширину резонанса можно считать малой величиной по сравнению со средней потерей энергии на одно столкновение нейтрона с атомом замедлителя нри энергиях, близких к резонансу. Обычно оценки резонансных интегралов ио полученным выше формулам оказываются завышенными примерно иа 10% [85]. Более точные методы показывают, что эквивалентные соотношения можно применять [2] с успехом весьма широко. [c.497]

    Источники света. Источниками ультрафиолетового и видимого света для проведения фотохимических исследований служат ртутные лампы. В зависимости от давления паров ртути, развивающегося при работе, различают лампы низкого давления 10 —1мм рт. ст., среднего давления 2-10 —2-10 мм рт. ст., высокого давления от 2-10 до (2- -3) 10 мм рт. ст. Излучение, возникающее при работе ртутных ламп, связано с переходами возбужденного атома ртути с соответствующих энергетических уровней в основное состояние. Если переход осуществляется с нижних энергетических уровней (6 Яь 6 Я ) в основное состояние (6 5о), происходит испускание так называемого резонансного излучения. В зависимости от строения внешней электронной оболочки атома может быть несколько резонансных линий испускания. Если атом в результате столкновений возбуждается до более высоких энергетических уровней, чем резонансный, то сначала происходит испускание кванта энергии, соответствующего разности этих уровней, а затем переход с резонансного уровня в основное состояние. На- [c.138]


    В заключение следует отметить, что хотя реальная структу ра соединений с делокализованными связями не соответствует в точности ни одной резонансной структуре, но при реакции мо лекулы этих соединений ведут себя так, как если бы в момент столкновения с частицей реагента они обладали определенной резонансной структурой. [c.71]

    Ступенчатая столкновительная релаксация колебательных возбуждений является относительно эффективным процессом, сечения рассеяния для одноквантовой дезактивации лежат в пределах 1—100% от газокинетических сечений для многих тушащих газов. Поэтому резонансная флуоресценция не наблюдается при давлениях, для которых кинетическая частота столкновения существенно превышает скорость спонтанной эмиссии например, для Л 10 с наблюдение резонансного излучения ограничивается давлениями ниже 1 мм рт. ст. (или меньше, если Л<10 с ). Нижние колебательные уровни верхнего электронного состояния заселяются переходами с уровня V, заселяемого поглощением, и при умеренных давлениях, при которых излучательные процессы и процессы тушения за счет колебательной релаксации еще конкурируют, излучение будет происходить со всех колебательных уровней верхнего состояния вплоть до V. Например, спектр флуоресценции МОг при низких давлениях, хотя его отдельные линии и не разрешаются, по мере возрастания давления в системе все более сдвигается в длинноволновую область. [c.93]

    Работа некоторых весьма важных газовых лазеров основана на механизме возбуждения в процессе межмолекулярного переноса энергии. Например, в гелий-неоновом лазере электрический разряд проходит через смесь, содержащую около 10% Ые в Не. Столкновения с электронами от разряда вначале заселяют первые возбужденные триплетные и синглетные состояния Не, как показано на рис. 5.6. Оптические переходы от этих состояний к основным состояниям запрещены и поэтому являются метастабильными и долгоживущими. Эти два состояния близко резонируют с двумя возбужденными состояниями N0 (обозначенными на рисунке 23 и 35), и столкновительный обмен энергией приводит к образованию возбужденного неона в состоянии 5. Имеются также низколежащие состояния Р, для которых резонансное возбуждение невозможно, так что осуще- [c.144]

    Уравнение (1.73) аналогично уравнению (1.47). Из него следует, что сильное резонансное взаимодействие возможно только при отличном от нуля дипольном моменте перехода, связанном с излучением или поглощением фотона А это как раз и имеет место, если соответствующий переход наблюдается в спектрах испускания или поглощения света. Когда полосы в спектрах испускания и поглощения молекул с и й перекрываются лишь частично, резонансное взаимодействие ослабевает. Если полосы не перекрываются, резонансный обмен энергий может наблюдаться при непосредственных контактах ( столкновениях ) молекул. [c.34]

    Гелий-неоновый газовый лазер представляет особый интерес в связи с темой данной главы. Неон является веществом, которое способно обнаруживать лазерное действие. Однако инверсная заселенность в нем достигается в результате переноса энергии от возбужденного состояния гелия к неону, который таким образом переводится в возбужденное состояние. Гелий возбуждается электрическим разрядом (столкновениями с электронами в электрической разрядной трубке). Для такого возбуждения неприменимы обычные правила отбора. Многие из возбужденных атомов гелия в конце концов попадают в низшее возбужденное состояние (конфигурации 15 2з ) либо непосредственно в результате возбуждения, либо в результате распада высокоэнергетических возбужденных состояний. Излуча-тельный переход из состояния в синглетное основное состояние запрещен по спину, вследствие чего состояние 51 обладает сравнительно большим временем жизни. Это состояние лежит приблизительно на 1,6-10" см- над основным состоянием гелия. Высшее энергетическое состояние конфигурации ls 2s 2p 4s неона [эту конфигурацию мы сокращенно обозначим символом (Ые+, 45)] лежит всего на 314 см- ниже по энергии, чем указанное возбужденное состояние, относительно основного состояния неона. В такой ситуации возможен резонансный перенос энергии, при котором энергия возбуждения переходит от гелия к неону. Состояния конфигураций (Не+, Зр) и (Не+, Зз) расположены между конфигурацией (Не+, 4з) и основным состоянием. Они не заселяются возбужденным гелием следовательно, создается инверсная заселенность между различными возбужденными состояниями неона. Преобладающее лазерное дей- [c.189]

    Ионизация бомбардировкой быстрыми атомами сходна с МСВИ но в этом случае поверхность мишени бомбардируется пучком нейтральных частиц По еле ускорения первичный пучок ионов Аг+ входит в ячейку столкновений с атомами Аг при низком давлении где происходит резонансная перезарядка [c.15]

    Уширение спектральных линий обусловлено совместным действием ряда факторов квантово-механи-ческой неопределенностью энергетических состояний атома, тепловым движением атомов относительно оси наблюдения (эффект Допплера), столкновениями атомов с посторонними частицами (эффект Лорентца) и между собой (резонансное уширение) и рядом др>тих эффектов. [c.824]


    В [136] на основе модифицированной волновой теории развит резонансный подход, состоящий в том, что рассматривается физическая модель процесса, в котором два атома Н, соединяясь, образуют нестойкое колебательнорезонансное переходное состояние. Этот нестойкий активированный комплекс в ходе последовательных столкновений стабилизируется с переходом в связанное основное состояние. Вклад вращательных и поступательных степеней свободы не учитывается. Недостатки подхода заключаются в том, что, во-первых, результаты практических расчетов слабо зависят от параметров потенциальной функции, во-вторых, сечение соударения рассчитывается без учета возможностей перехода в разные состояния (т, е, пренебрегается многоканальностью выхода), в-третьих, неучет влияния континуума, т, е, столкнови-тельной диссоциации резонансных состояний и прямой рекомбинации из нерезонансных состояний, не позволяет успешно распространить подход на область высоких температур, Да и в области низких температур теория предсказывает в температурной зависимости коэффициента скорости наличие локального максимума в районе (65— 70) К — прогноз, не получивший экспериментального подтверждения [105], [c.262]

    Рассмотрим в рамках этих предположений колебате.тьную релаксацию смеси двухатомных газов (молекулы А и В) в тепловом резервуаре инертного одноатомного гааа М. Релаксационные кинетические уравнения строятся по общим формулам (8.28) с учетом VI- и резонансных и квазирезопапспых межмолекулярных УУ-процессов. Если предположить, что молекулы можно моделировать гармоническими осцилляторами, то обмен колебательной энергии нри столкновениях А + А и В + В носит чисто резонансный характер. Поэтому, вообще говоря, в системе имеется три различных процесса — резонансный У7-обмен (столкновения Ас А и В с В), квазирезонансный обмен (столкновепия А с В) и УТ -релаксация (столкновения А с А, В, М и В с А, В, М). Соответственно этому имеется три характеристических времени [c.96]

    Сечения квазнрезонансной передачи возбуждени [ резко зависят от величины дефекта резонанса ЛЕ, достигая при малых АЕ очень больших величин — до 10 см . На рис. 25, заимствованном м обзора [358], приведены экспериментальные данные по сечениям передачи электронного возбуждения атомам щелочных металлов М (М == Ма, ВЬ, Ся) лри столкновениях с возбужденными атомами Н и М. Обращает на себя внимание явно выраженная резонансная форма сечения Q в зависимости от энергии АЕ, переданной поступательным степеням свободы. [c.102]

    На рис. 6.2 представлены кривые д (х, и) как функции х для нескольких значений и. Необходимо иметь в виду, что т, согласно зависимости (6.15), есть монотонно возрастающая функция и. Как можно заметить (рис. 6.2) д х, и) имеет две важные серты 1) для. любой летаргии плотность замедления имеет максимум в координате источника ж=0 2) влияние вероятности нейтрону избежать резонансного поглощения р (и) всегда снижает д (х, и) для данного х. Из кривых видно, что те ]1ейтропы высокой энергии, которые испытывают лишь немного столкновений, концентрируются в окрестности источника. Это находится в полном согласии с моделью непрерывного замед- ления, которая предполагает, что нейтрон постепенно теряет спою энергию, [c.193]

    В NR-пpиближeнии предполагается, что резонансы в горючем настолько удалены один от другого и такие узкие, что нейтрону достаточно единственного столкновения с ядрами горючего, чтобы проскочить резонанс (напрпмер, это имеет место в высокоэнергетических уровнях в и ТЬ ). В этих случаях для потока во всем резонансном интервале можно использовать асимптотическое выражение [c.469]

    Стандартная формула. Представляет большой интерес сравнить полученные формулы для резонансного интеграла со стандартной формулой. Сравнение проводится в NR-нриближении узких резонансов для плотности столкновений. Для этого случая резонансный интеграл вглража- "ВО тся формулой (10.135)  [c.509]

    Резонансное взаимодействие обнаружено при передаче энергии от флуоресцирующей молекулы к молекуле тушителя. Если молекула тушителя поглощает при более длинных волнах, чем флуоресцирующая, то передача энергии может происходить на значительно больших расстояниях, чем радиус столкновения. Расстояние, на котором осуществляется перенос энергии, для систем антрацен—перилен, перилен—рубрен достигает 50—100 А. Такой резонансный перенос приписывают дальнодействую-щему диполь—дипольному взаимодействию. Резонансный перенос энергии может наблюдаться не только для электромагнитного, но и для акустического поля (М. Волькен-штейн). [c.96]

    Газовый разряд в трубках с полым катодом. В т оках с полым катодом эмиссионный спектр материала катода получается при электрическом тлеющем разряде. Этот разряд осуществляют в атмосфере инертного газа при пониженном давлении (3—5 мм рт. ст.), и так как в этом случае допплеровское уширение, а также уширение за счет столкновений уменьшаются, в спектре получаются чрезвычайно тонкие линии. Поэтому трубки с полым катодом применяют в качестве первичных излучателей при наблюдении резонансного поглощения. Обычно для каждого элемента требуется специальная трубка. [c.189]

    При высоких давлениях газов, при которых скорость столкновений существенно превышает скорость излучения, колебательная релаксация протекает очень быстро и флуоресценция с уровней v >0 не наблюдается. Скорость колебательной релаксации очень велика в растворах, поэтому флуоресценция с колебательно-возбужденных уровней никогда не наблюдается в жидкой фазе. Более того, ни спектр флуоресценции, ни скорость дезактивации не изменяются с изменением длины волны возбуждающего излучения, до тех пор пока оно лежит в пределах полосы поглощения. Переходы 5о->-51 в органических соединениях часто бывают частично запрещены поэтому для того чтобы получить достаточное с точки зрения возможности регистрации газофазной флуоресценции поглощение света, требуются высокие давления, которые приводят к колебательной релаксации молекул на уровень и = 0. Эта релаксация совместно с безызлучательными потерями энергии у сложных частиц способствует тому, что в сложных органических молекулах эффекты резонансной флуоресценции или излучение с колебательновозбужденных уровней наблюдаются крайне редко. [c.93]

    И.-м. р. с переходом электронов — окисл.-восст. бнмо-лекул. р-ции в газ. фазе наэ. р-циями перезарядки. Эти р-ции идут столь же быстро, что и р-ции с переходом тяжелых частиц. Из всех стехиометрически возможных путей р-ции перезарядка выбирает> резонансный канал, в к-ром потенциал ионизации нейтр. частицы равен потенциалу образования перезаряжаемого иона из нейтр. частицы соответствующего этому иону состава. Точный резонанс характерен только для столкновений одноименных частиц, напр. Аг+ 4- Аг -) Аг -Ь Аг+ или N0+ -f N0 N0 + N0+ (т. н. симметричная резонансная перезарядка). Поскольку многоатомные частицы (молекулы) обладают большим числом колебат. и вращат. энергетич. уровней, электронный переход легко находит случайный резонанс, и константы скорости экзотермич. перезарядки обычно так же велики, как и при столкновении одноименных частиц. Из-за требования [c.225]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    В. с. могут терять избыток энергии, переходя в основное состояние (или нижележащие В. с.) путем испускания фотонов, безызлучат. резонансного переноса энергии или при столкновениях с др. молекулами. Поэтому B. . имеют огранич. время жизни, определяемое суммой констант скорости всех процессов дезактивации. В многоатомных молекулах происходят внутримолекулярные процессы перераспределения энергии между разл. видами возбуждения. В равновесных условиях при данной Аре заселенность разл. состояний зависит от их энергии в соответствии с распределением Максвелла - Больцмана. При т-рах порядка неск. сот К заселены гл. обр. самые нижние электронное и колебат. состояния, а вращат. и спиновые состояния заселены почти равномерно. Под действием излучения соответствующей частоты возникает сверхравно-весная концентрация B. ., зависящая от интенсивности поглощаемого света и времени жизни (времени релаксации) В. с. [c.408]

    В газовых р-циях, когда время контакта радикалов или др. парамагнитных частиц при столкновении составляет 10 с, проявляется только спиновый эффект. В жидкостях и твердых телах время жизни радикальных пар достаточно велико для того, чтобы спиновое состояние реагирующей пары могло измениться. Превращ. нереакционноспособных спиновых состояний пар в реакционноспособные (напр., триплетных радикальных пар в синглетные) индуцируется магн. взаимодействиями т. обр., спиновый эффект становится М.-с. э. Магн. взаимод., изменяющие спиновые состояния радикальньгх пар, их заселенность, м. 6. индуцированы внеш. магн. полем (тогда они приводят к зависимости скорости р-ции от напряженности поля), внутр. магн. полем, создаваемым ядрами (тогда они приводят к различию в скоростях р-ций радикалов с магн. и немаги. ядрами, т.е. к магн. изотопному эффекту) и переменными высокочастотными резонансными полями. [c.624]

    Вг ("Л/2) + НС1(г = 0) (а) Вг ( Рз/2) + НС1(1) = 1) Вг ( Рз/2) -(- НС1(1) = 0) (б) Канал (а) протекания р-ции приводит к резонансному электронно-колебат. обмену энергией, канал (6)-та чисто колебат. дезактивации молекулы. В нек-рых случаях М. р. включает в явном виде отвод энергии от образовавшейся в р-ции частиц. Так, рекомбинация атомов и радикалов, напр, к -(- к" -> КК, может осуществляться только как три-молекуляртя реакция с участием третьей частицы X, отводящей энергию, т. к. иначе выделившаяся при р-ции энергия приведет к диссоциации образовавшейся молекулы КК(Я -(- К -I- X -> КК -(- X ). Скорость такой р-ции пропорциональна квадрату концентрации радикалов и общему давлению. В случае рекомбинации многоатомных радикалов энергия р-ции распределяется по мн. степеням свободы и образующаяся молекула приобретает стабильность, а избыточную энергию отдает при послед, столкновениях с др. молекулами. Импульсная ИК лазерная фотохимия позволяет экспериментально решать мн. тонкие вопросы передачи энергии между молекулами и между разными степенями свободы внутри молекулы. [c.76]

    Весьма существенными моментами, определяющими эффективность процесса, являются скорости релаксации и передачи возбуждения при столкновениях молекул. Столкновения между возбужденными и невозбужденными молекулами, содержащими различные изотопы урана, приводят к значительному снижению селективности из-за весьма вероятного при столкновениях процесса резонансной передачи энергии возбуждения от одной молекулы к другой. Чтобы уменьшить деселектирующее действие этого процесса, рабочую смесь разбавляют достаточным количеством какого-либо газа, не содержащего уран. Как уже говорилось, другим нежелательным процессом является релаксация (сброс) энергии возбуждения при столкновениях с молекулами рабочей смеси. Отношение скоростей полезного (приводящего к химиче- [c.272]

    Основные помехи в методе АФА. Основными помехами в методе АФА являются неселективно рассеянное излучение возбуждающего источника света и тушение флуоресценции при столкновениях возбужденного атома с окружающими его атомами и молекулами. Оба процесса происходят в атомизаторе. Неселективно рассеянное излучение, проникая вместе с полезным сигналом в систему спектральной фильтрации, завышает его величину. Наиболее сильно влияние рассеянного излучения проявляется в случае наблюдения резонансной флуоресцещии. Для учета рассеянного излучения применяются устройства, аналогичные зеемановскому корректору фона в атомно-абсорбционном методе, и различные способы временной селекции полезного сигнала и фона. Влияние рассеянного излучения резко снижается в случае наблюдения смещенных линий флуоресценции. Однако этот способ не всегда может бьггь реализован в силу специфики строения энергетических уровней атомов. [c.854]


Смотреть страницы где упоминается термин Столкновение резонансное: [c.499]    [c.39]    [c.49]    [c.97]    [c.159]    [c.75]    [c.77]    [c.469]    [c.471]    [c.490]    [c.494]    [c.509]    [c.510]    [c.160]    [c.401]    [c.131]    [c.638]    [c.164]    [c.31]   
Химия горения (1988) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные

Столкновения



© 2025 chem21.info Реклама на сайте