Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кокса тепловые

    Тепло, необходимое для ведения процесса, вносится катализатором, нагретым в зоне регенерации при сжигании осевшего на нем кокса. Тепловой баланс процесса может быть замкнут путем соответствующего регулирования соотношения СО и СО2 в дымовых газах. Капиталовложения, необходимые для процесса, по предварительным данным, значительно ниже, чем в процессе производства водорода конверсией углеводородного сырья с паром. Ниже приводятся основные технико-экономические показатели, соответствующие различным методам производства водорода [ПО, П1]  [c.132]


    Следует отметить в целом высокий выход ВЭР в коксохимическом производстве (около 80% от первичного энергопотребления). Это прежде всего энергетический потенциал коксового газа, выполняющего функции теплового и горючего ВЭР, а также физическое тепло кокса (тепловой ВЭР, не относящийся к газовым). [c.412]

    Поскольку для каменных углей, особенно коксующихся, тепловой эффект близок к нулю, а для мало метаморфизованных (Д и Г) положителен, но очень мал (порядка 25—50 ккал/кг) и, наоборот, для тощих углей также мал, но имеет отрицательную величину, то в целом при коксовании шихт из разных углей тепловой эффект разложения практического значения не имеет. [c.174]

    В зоне подготовки отходы прогреваются, из них удаляется влага и выделяются летучие вещества, образовавшиеся в результате нагрева отходов. В кислородной зоне происходит сгорание углерода кокса с образованием диоксида и частично оксида углерода, в результате чего выделяется основное количество тепла в слое. В конце кислородной зоны наблюдается максимальная концентрация СОг и температура слоя. Непосредственно к кислородной зоне примыкает восстановительная зона, в которой происходит восстановление диоксида углерода, оксида углерода с потреблением известного количества тепла. Заканчивается процесс горения выжиганием озоленно-го кокса. Тепловая работа слоя топлива и топочного объема подробно описаны в специальной литературе. [c.50]

    Целевыми продуктами процесса, как указывалось ранее, яв — ЛЬЮТСЯ бензин и сжиженный газ. Кокс, хотя и фигурирует в материальном балансе процесса (вместе с потерями), но не выво — д.гтся из установки и полностью сгорает в регенераторе, обеспечивая тепловой баланс реакторного блока. [c.124]

    На крекинг-установке, имеющей трубчатую печь, тепловой режим реактора можно регулировать не только со стороны еге-нератора, но и со стороны подготовительной секции. Количество вносимого в рабочую зону реактора тепла можно увеличивать путем повышения как кратности циркуляции катализатора, так и степени парообразования сырья в печи. Недостаточный подвод тепла в реактор регенерированным катализатором (например, в случае уменьшения выхода кокса) легко восполнить более форсированной работой печи подготовительной секции. На фиг. 11 указаны температуры потоков в секциях подготовки и фракционирования на одной из действующих установок.  [c.38]

    В I и И секциях горение кокса только начинается, и катализатор имеет довольно низкую температуру. Чтобы ускорить горение, коэффициент избытка воздуха доводят до 1,2—1,5. Эти секции по сравнению с расположенными ниже менее нагружены в тепловом отношении. [c.144]


    Определение расчетным путем величины потери тепла пог в окружающую среду громоздко и дает лишь приблизительное значение ее. При выполнении дальнейших расчетов будем считать, что потеря тепла регенератором в окружающую среду составляет в первом приближении 40 ООО—70 ООО ккал/час на 1 m сжигаемого в час кокса. В тепловом балансе промышленного регенератора величина ( пот невелика по сравнению с численными значениями основных статей теплового баланса. [c.288]

    В случае регенерации железоокисного катализатора этот перегрев будет выще за счет того, что при окислении самого катализатора выделяется дополнительное количество тепла. Теплота сгорания кокса (около 33310 кДж/кг) значительно превышает теплоту окисления железа (табл. 3.1), но содержание кокса на катализаторе обычно составляет несколько процентов, и поэтому суммарный тепловой эффект горения кокса будет сравним с суммарным тепловым эффектом окисления железа катализатора. Это может привести к значительно большему, чем при каталитическом крекинге, кратковременному перегреву зерна катализатора, что является нежелательным по ряду причин. [c.79]

    Для обеспечения нормальной работы, трубчатой печи следят за правильным тепловым режимом. Ни в коем случае нельзя допус-i кать превышения допустимой температуры в трубах радиантной секции. Радиантные трубы в ходе эксплуатации покрываются слоем кокса, поэтому их необходимо периодически чистить. Механическую очистку производят через отверстия в ретурбендах с помощью скребков и шарошек, затем продувают воздухом. Паровоздушная очистка заключается в выжигании кокса воздухом. Для этого паровоздушную смесь пропускают по трубам при незначительном нагреве печи. Паровоздушный способ значительно упрощает и ускоряет очистку, однако требует тщательного температурного контроля, так как перегрев приводит к прогару труб. [c.221]

    В реакторе пары продуктов крекинга отделяются от катализатора. Катализатор ссыпается в отпарную секцию, снабженную перегородками для повышения эффективности отпаривания, и далее самотеком поступает в регенератор 6. Воздух на регенерацию подается воздуходувкой 9. Температура регенерации 700 °С, давление 2,5 МПа интенсивность выжига кокса составляет 80 кг/(т-ч). В регенераторе отсутствуют змеевики для отвода избыточного тепла и тепловой баланс реакторного блока поддерживают изменением соотношения оксидов углерода путем регулирования системы раздельной подачи воздуха в воздушные змеевики. [c.60]

    Поступая в камеры снизу, горячее сырье постепенно заполняет их, а так как объем камер большой, время пребывания в них сырья значительно и здесь происходит крекинг. Пары продуктов разложения непрерывно выводятся из камер в колонну 6, а утяжеленный остаток задерживается в камере. В результате в жидком остатке накапливаются коксообразующие вещества, и остаток постепенно превращается в кокс. Процессы поликонденсации, свойственные коксованию, протекают с выделением тепла, но, поскольку коксование сопровождается и реакциями разложения, суммарный тепловой эффект — отрицателен, и пары, выходящие из камер, имеют температуру на 30—50 °С ниже температуры ввода сырья в камеры. [c.74]

    Некоторые углеводороды и смолы при высокой температуре разлагаются и отгоняются паром, что приводит к подсушиванию кокса, его растрескиванию и отслаиванию от стенок труб. Отслаивание кокса от стенок является также следствием значительно различающихся коэффициентов теплового расширения кокса и металла. Поэтому даже в печах термического крекинга, где кокс плотно прилегает к стенкам труб, после паровой обработки он растрескивается и уносится потоком пара при нагреве до 550—650 °С. Однако продолжительная пропарка не всегда рациональна. Так, плотный осадок кокса в трубах печей установок каталитического крекинга после длительной паровой обработки не поддается разрушению, и воспламенить его довольно трудно. Поэтому для каждой печи опытным путем нужно определить оптимальное время пропарки. По окончании ее горелки гасят, перекрывают подачу пара, устанавливают заглушки, отсекающие трансферные трубопроводы, и монтируют тру- [c.190]

    Подсчитано, что при наличии слоя кокса толщиной 1 мм температура стенок труб повышается на 25 °С прп тепловом напряжении их 29 кВт/м . Тщательная очистка поверхностей труб от кокса способствует нормальной эксплуатации печей. Кроме того, в отсутствие иленки кокса интенсивность нового коксообразования в трубах снижается. [c.193]

    Температура стенок печных труб зависит от температуры нагреваемого в них сырья, тепловой нагрузки поверхности этих труб и суммы термических сопротивлений внутреннего осадка (кокса, солей и т. п.), металла печных труб, наружного осадка (золы, корки оксидов железа). Все перечисленные параметры в период эксплуатации печей изменяются, поэтому для расчета принимают средние значения указанных параметров. Температура стенки трубы i T может быть вычислена по формуле [c.203]


    Образование и отложение кокса на внутренней поверхности печных труб представляют со ой сложные процессы, зависящие от многих факторов. В нагревательных печах тепловой режим отдельных зон должен устанавливаться с учетом физико-хими-ческих свойств углеводородного сырья и скоростей движения его потоков. В высокотемпературной зоне прямогонной печи при испарении нагретого сырья жидкая фаза потока утяжеляется (так как прежде всего испаряются низкокипящие фракции) и создаются условия для образования осадков солей, которые отлагаются на поверхности труб, увлекая за собой частицы смол и асфальтенов. Возникшие зародыши кокса становятся ядрами дальнейшего коксообразования. Чем больше солей, тем больше центров коксообразования. Некоторые соли являются не только зародышами коксоотложений, но и, вероятно, обладают каталитическим действием, поскольку при нагреве сырья с повышенным содержанием солей температура начала интенсивного коксообразования снижается. [c.273]

    Во избежание быстрого отложения солей и кокса в нагревательных печах рекомендуется в зонах интенсивного испарения сырья создавать более мягкий тепловой режим. Другими словами, теплонапряженность поверхности нагрева, максимально допустимая в начале трубчатого змеевика, должна быть снижена в зонах интенсивного испарения, [c.273]

    Величина теплового эффекта О принята на основании н -однократно проводившихся расчетов по формуле Менделеева по данным элементарного состава кокса, имеющимся в литературе (Р = —3,5-10 кДж/т). [c.181]

    При этих допущениях математическую модель рассматриваемого процесса можно представить системой уравнений материального и теплового балансов для элементарного объема трубчатого реакторного устройства. С этой целью выделим элементарный объем трубы, заполненный катализатором, на расстоянии от I до / + (И. Обозначим массовый поток кислородсодержащего газа с плотностью у г и теплоемкостью через Fo, текущую концентрацию кислорода в нем — С, содержание кокса на катализаторе — р, насыпную плотность катализатора — у, теплоемкость его —с,,, долю свободного объема в слое — е, сечение трубы — 8, температуру процесса — Т, скорость реакции, измеренную по кислороду и отнесенную к единице реакционного объема — ю, соотношение скоростей реакции по кислороду и коксу — Р, тепловой эффект реакции (положителен для эндотермического процесса) — д, коэффициент теплопередачи через стенку — к- , поверхность трубы на единицу длины ее слоя — 5 01 температуру наружного воздуха — Гн. [c.306]

    При этих упрощениях математическую модель промышленного регенератора можно представить в виде системы дифференциальных уравнений, описывающих для элементарного слоя материальные балансы по кислороду и коксу и тепловой баланс. [c.325]

    Тепловой эффект д принят на основании неоднократно проводившихся расчетов по формуле Менделеева с использованием элементарного состава кокса, имеющегося в. литературе д = = -34,7-10 кДж/т). [c.327]

    Остальные реакции (такие, как дегидрирование парафинов и гидрирование олефинов, гидрирование сернистых соединений, отложение кокса) затрагивают незначительную долю сырья и в общем материальном и тепловом балансе могут не учитываться. [c.338]

    Учитывая, что изменение давления в аппарате невелико и не оказывает существенного влияния на процесс, в математическое описание включаем уравнения материальных балансов по кислороду и коксу и общее уравнение теплового баланса. [c.107]

    Приведенные в таблице теплоты относятся к 1 кз поданного в реактор сырья. Очевидно, что эта теплота должна возрастать при увеличении степени превращения сырья, что хорошо иллюстрируется данными промышленной установки. Так, при увеличении условной глубины превращения сырья (т. е. суммы выходов бензина, газа и кокса) с 63,1 до 80,7% весь тепловой эффект возрастает с 43,0 до 48,4 ккал/кг. [c.206]

    Количество свободного кислорода и СО в дымовых газах регулируется количеством воздуха, подаваемого в регенератор. Если анализ показывает недостаточное количество свободного. кислорода в отходящих дымовых газах, то количество воздуха, подаваемого в регенератор, увеличивается и содержание кислорода в дымовых газах доводится до требуемой величины. В случае, если количество свободного кислорода в дымовых газах достаточно, то выжиг кокса на катализаторе (при недостаточном его выжиге) производят за счет уменьшения скорости циркуляции катализатора. По мере повышения тепловой нагрузки регенератора увеличивают количество циркулирующего катализатора, а также количество воды, прокачиваемой через котел регенератора. Следует отметить, что питание котлов должно производиться чистым конденсатом или химически очищенной водой с нейтральной реакцией. [c.151]

    Бурке, Шуман и Парри [65] представили доказательства, которые показывают, что законы проводимости тепла для дробленого топлива остаются подобными тем, которые были развиты Фурье в его классических работах о течении тепла внутри гомогенного тела. В своих исследованиях они, однако, пренебрегли влиянием излучения, которое, как было показано позже, имеет важное значение [57, 61]. Их экспериментальные исследования включали исследование влияния нагревания на массу дробленого материала с одинаковой начальной температурой, помещенную в цилиндр с постоянной и более высокой температурой степки, и наблюдение во времени иовышения температуры по оси цилиндра с помощью термопар. Была найдена прекрасная согласованность для двух углей в дробленом состоянии и одного высушенного дробленого кокса с формой кривой, предсказанной на основе аналитического исследования по Фурье, и результаты позволили рассчитать тепловую диффузию, которая является критерием скорости расиространения температурной волны [66] и которая эквивалентна отношению теплопроводности к произведению удельной теплоты на плотность. Тепловая диффузия питтсбургского угля в 16 меш составляла 0,06 см 1мин в интервале температур 15—343° при атмосферном давлении. Прпнршая удельную теплоту и единицу плотности равной 0,3, получим, что теплопроводность в этом частном случае составит 0,00030. Для монолитного кокса тепловая диффузия была найдена равной 0,024 см мин в интервале температур 15—538°. [c.88]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    С увеличением глубины крекинга сырья и при перегреве труб усиливается отложение кокса на внутренней поверхности змеевика сокинг-секции, что сокращает длительность рабочего пробега печи. Рекомендуемые значения тепловых напряженностей радиантных поверхностей нагрева (подсчет по наружному диаметру труб) в печах висбрекинг-установок следующие нагревательная секция 102—113 МДжДм -ч), сокинг-секция 68—80 МДж/(м2-ч). Эти значения приемлемы при одностороннем факельном облучении труб, располагаемых у потолка и стен с шагом, равным двум диаметрам [11]. [c.26]

    Тепловой эффект неполного окисления катализатора до РезО ниже, чем для полного окисления до Ре20з (табл. 3.1). Таким образом, предотвращения перегрева можно достичь не только снижением концентрации кислорода и рациональной организацией потоков, но и путем неполного окисления железа катализатора. Последнее возможно при относнтельно высоких температурах регенерации, поскольку в этом случае скорость окисления кокса выше скорости окисления металла. [c.79]

    Из рис. У-5 видно, что при предварительном быстром нагреве степень превращения повышается по сравнению с равномерным нагревом при одинаковом суммарном расходе тепла. В данном примере выбор тепловых нагрузок 37 800 и 12 600 вт1м был сделан неудачно, поэтому температура жидкой фазы уменьшилась в последней секции печи. В общем случае отрицательный температурный градиент вдоль реактора будет приводить к образованию кокса на поверхности труб. Выбор тепловых потоков плотностью 31 460 и 8670 вт1м возможно улучшит температурный режим печи по сравнению с равномерным подводом тепла (25 200 вт/м ). [c.163]

    Стабилизация. У даление из бензина нежелательных летучих компонентовК преимуществам комбинированных установок 1этносятся исключение тепловых потерь и отсутствие промежуточных парков. Продуктами установок являются газ, бензин и тяжелое котельное топливо в тех случаях, когда отсутствует спрос на котельное топливо, предусматривается крекинг его с получением дополнительных количеств бензина и кокса. [c.305]

    Обзор огневых нагревателей закончим трубчатой печью, работающей на пылевидном топливе — нефтяном коксе (рис. 176). В новейших конструкциях печей в топках одновремсппо с коксом сжигаются мазут и сухой газ. Подобные печи успешно оксплуатируются па мощной (7 млн. т/год) атмосферно-вакуумной трубчатой установке в штате Делавер (США) в них сжигается до 220 mj ymKu пылевидного кокса. Перед подачей в топки двух параллельно работающих печей общей тепловой мощностью 90 млн. ккал/ч кокс истирают до частиц размером 200 меш (0,074 мк). Обе печи имеют общую дымовую трубу высотой 105 м, что позволяет рассеивать дымовые газы. [c.280]

    Во всех систе1иах каталитического крекинга с движущимся слоем катализатора тепловые балансы реактора и регенератора взаимосвязаны. Тепло, необходимое для нагрева сырья до температуры реакции и осуществления самого процесса, вносится двумя источниками из регенератора потоком регенерированного катализатора и из трубчатой печи с подогретым сырьем. При повышенном коксообразовании тепла сгорания кокса достаточно для обеспечения всего количества тепла и необходимая температура предварительного нагрева сырья достигается уже в системе теплообменников. Однако на современных промышленных установках предпочитают сооружать печи, поскольку это сообщает процессу гибкость при изменении качества сырья и глубины конверсии. [c.51]

    Теплоты каталитического крекинга в промышленных условиях (—150—250 кДж/кг) хорошо согласуются с рассчитанными величинами. Приведенные теплоты относятся к 1 кг сырья, поданного в реактор. Очевидно, при увеличении степени превращения сырья теплота должна возрастать, что подтверждается данными промышленной установки. Так, при увеличении условной глубины превращения сырья (т. е. суммы выходов бензина, газа и кокса) с 68, до 80,7% тепловой эффект возрастает со 180 до 205кДж/кг. [c.109]

    Переработку мазутов восточного происхождения в первой ступени следует вести при более высоких температурах. Применсчше в первой стунени естественных или активированных глин или катализаторов с низкой активностью не рентабельно, так как для выжига с их поверхности всего количества образующегося кокса потребуются большие размеры регенерационного устройства, введение в схему дополнительных котлов-утилизаторов и и т. д. Использование в качестве теплоносителя в первой ступени нефтяного или иного кокса, обладающего большой механической прочностью, нозво- ияет отводить из системы укрупненный кокс (в качестве товарной продукции), причем выжиг кокса в регенераторе можно ограничить количеством, необходимым для нужд теплового баланса. Обладая низким итщексом активности, кокс исключает возможность ароматизации фракции 350—500 °С, которая имеет место, если теплоносителем служат глины или катализаторы со средним индексом активности (до 20). [c.248]

    В работу должны быть включены все горелки с примерно одинаковой нагрузкой по зонам топки. Разогрев излучающей стенки радиантной камеры должен создавать равномерный температурный проф,иль (перепад температуры излучающей стенки 30—60 С). Неисправные горелки необходимо немедленно ремонтировать, чтобы не нарушать теплового режима работы печи. В конце рабочего пробега печи, из-за отло кений кокса внутри пирозмеевиков могут появиться места локального перегрева труб. В этих случаях необходимо уменьшить интенсивность горения топлива соответствующих горелок. При коксо-отложении температура стенки последних труб секций иирозме-евиков повышается и достигает предельного значения. В случае необходимости продолжения пробега печи уменьшают расход топливного газа на горелки и снижают ироизводительность по сырью. [c.102]

    В результате неоднократного применения способа паровоздушного выжига кокса появляется еще один существенный дефект быстрый износ переточных трубопроводов (перетоков). Особенно быстро выходят из строя перетоки из пода в потолок, несколько медленнее — перетоки из конвекционной секции печи в радиантную и выходные трубы, подсоединяемые к основной трансферной линии. Такой интенсивный износ можно объяснить следующим образом покрытые толстым слоем тепловой изоляции переточные трубы при выжиге кокса нагреваются до очень высокой температуры, так как отсутствует отвод тепла в окружающую атмосферу. При перегреве металл становится мягким, а вследствие больших скоростей движения смеси пара и воздуха с окалиной и частичками кокса наряду с коррозией происходит большой эрозионный износ. [c.196]


Смотреть страницы где упоминается термин Кокса тепловые: [c.24]    [c.130]    [c.157]    [c.75]    [c.388]    [c.157]    [c.158]    [c.10]    [c.280]    [c.286]    [c.4]    [c.138]   
Расчеты основных процессов и аппаратов нефтепереработки Изд.3 (1979) -- [ c.230 , c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Коксо газ



© 2025 chem21.info Реклама на сайте