Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волны температурные

    Скорости продольной С и поперечной С ультразвуковых волн, температурный коэффициент скорости продольной волны, плотность, модули упругости и (1 и коэффициент [c.27]

    Таким образом, процесс кавитации повторяет в миниатюре процесс электрического разряда, сопровождаясь ударной волной, температурным и электрическим воздействиями. [c.86]


    Из формулы (IV. 64) следует, что температурная кривая газа на выходе из слоя большой длины L состоит из двух симметричных ветвей с точкой перегиба при 2] = У и 01 = 0,5 время прохода тепловой волны через зернистый слой, соответствующее этой точке  [c.145]

    После этого цикл повторяется. При такой организации процесса центральная часть слоя работает в режиме переменных направлений фильтрации реакционной смеси, а тепло, выделяющееся в этой части, служит для попеременного нагрева слоев Лз и Л3. Крайние части слоя работают периодически в режиме нагрева или формирования и вытеснения тепловой волны. Через несколько переключений во всех частях слоя устанавливаются периодически повторяющиеся температурные и концентрационные поля. [c.296]

    Таким образом, установившийся режим во вспомогательном слое характеризуется движением высокотемпературной волны реакции по переменному направлению, а в основном слое осуществляется циклическое изменение температуры на входе в слой катализатора. Выбирая соответствующую длительность цикла в основном слое, можно добиться того, чтобы температурные колебания имели затухающий к концу слоя характер, как это видно на рис. 6.10, е, з. [c.161]

    Рассматривая гидродинамику гелия II как системы, состоящей из двух взаимно проникающих жидкостей, нормальной и сверхтекучей, Д. Тисса (1938) и Л. Д. Ландау (1941) предсказали, что в этой системе наряду с обычными звуковыми волнами должны существовать температурные волны, распространяющиеся с некоторой скоростью аг-Эти волны были названы вторым звуком. По Тисса, при О К скорость второго звука должна обращаться в нуль, а по Ландау, она должна сохранять конечное значение. Экспериментальное доказательство существования второго звука было получено В. П. Пешковым в 1946 г. 175]. Результаты измерений скорости второго звука, выполненных В. П. Пешковым и другими исследователями, находятся в качественном согласии с теорией Ландау. При температуре, близкой к О К, скорость второго звука составляет около 200 Рп/Р м/с и в соответствии с теорией Ландау растет с увеличением давления. [c.247]

    Важный вопрос теории рассматриваемого метода исследования - учет роли переноса тепла излучением в среде, полупрозрачной для инфракрасного теплового излучения. Этот вопрос относится к одной из самых серьезных проблем, возникающих при изучении теплопроводности жидкостей. Наличие радиационного переноса тепла путем переизлучения в среде может не только су щественно искажать данные по теплопроводности, но и приводить к нарушению закона Фурье со всеми вытекающими отсюда последствиями. В этих условиях теряет смысл понятие коэффициент теплопроводности, перенос тепла становится зависящим от кон( и-гурации системы, от излуча-тельных свойств поверхностей и т.п. (к этому вопросу мы вернемся в гл. У, 2 при обсуждении данных по теплопроводности углеводородов). Б работе /15, 18/ были проведены расчеты вклада радиационного переноса для плоских температурных волн и показано, что в экспериментах с плоскими зондовыми датчиками измеряемая теплопроводность является чисто молекулярной, свободной от радиационного вклада. В /10/ этот важный вывод был распространен на эксперименты с проволочными датчиками. [c.8]


    По тематике этот параграф должен был бы следовать непосредственно за первым, поскольку там и здесь речь идет о теплофизических (тепловых) свойствах. Однако, по существу, как уже отмечалось, оптические методы исследования примыкают к описанным в 1 методам температурных волн, что и обусловило именно такое расположение материала. [c.14]

    Для изучения природы поглошения электромагнитных волн в слабополярных К /I 0,1 0,2 О ) жидких диэлектриках необходимо измерять частотную и температурную зависимости комплексной диэлектрической проницаемости [c.95]

    Планком теоретически получена следующая зависимость общей энергии теплового (температурного) излучения от абсолютной температуры и длины волн  [c.271]

    Детальный анализ материалов наблюдений позволяв сделать вывод, что температурные волны в толще грунта в процессе работы заглубленного резервуара затухают на расстоянии 0,4—0,5 м от наружной поверхности резервуара. [c.33]

    Если поляризующее поле колеблется с высокой частотой, то из-за инерции постоянных диполей они не успевают следовать за колебаниями поляризующего поля. Поэтому постоянные диполи не оказывают никакого влияния на молярную рефракцию (свет представляет собой высокочастотное электромагнитное поле). При частотах 10 Гц (длина волны 10—100 см, т. е. область дециметровых волн) возбуждается также и ориентационная поляризация . Такое возбуждение зависит от внутреннего трения среды и в твердых телах вообще не наблюдается. Дипольные моменты молекул газа можно непосредственно определить из уравнения Дебая, измерив температурную зависимость диэлектрической проницаемости. Значения и и (г нахо- [c.100]

    Величина адсорбционного тока пропорциональна высоте столба ртути-Особенно характерна температурная зависимость. С увеличением десорбции при повышении температуры волна уменьшается и затем исчезает. Линейная зависимость адсорбционного тока от концентрации веществ наблю. дается только в определенной области. [c.127]

    По графику температурной зависимости нри=-вести высоту волны при 45° к высоте волны при 30° и по калибровочному графику определить концентрацию. [c.247]

    Термостолбики очень чувствительны к малым флуктуациям окружающей температуры и к сквознякам. Поэтому в фотохимических экспериментах проще использовать фотоэлементы. Схема фотоэлемента показана на рис. 7.2, б. Он состоит из фотокатода и коллектора, заключенных в откачанную колбу. При освещении катода, изготовленного из подходящего материала, из него вылетают электроны. Если коллектор имеет положительный заряд относительно катода (т. е. является анодом), то во внешней электрической цепи потечет ток. Условия работы можно выбрать таким образом, чтобы этот ток был пропорционален интенсивности света, попадающего на фотокатод. Однако квантовый выход эмиссии фотоэлектронов из катода зависит от длины волны света и может быть неизвестен. Поэтому необходимо калибровать фотоэлемент по термостолбику или по вторичному стандарту. Основными преимуществами фотоэлемента являются, во-первых, большая, чем у термостолбика, чувствительность и, во-вторых, слабая чувствительность фотокатода к длинноволновому излучению, исключающая неприятные малые температурные флуктуации. Для измерений интенсивности света в УФ-области можно выбрать такой материал фотокатода (например, чистый натрий), что фотоэлемент не будет детектировать видимый свет и отпадет необходимость его тщательного экранирования от освещения лаборатории. [c.188]

    Из приведенного графика (рис. 1.17) видно, что максимальное температурное разделение (Ato = 6,5°С) в трубке Г-Ш получается тогда, когда 20% нагретого газа выводится из трубки через вентиль (3) в ее торце. Использование трубки для охлаждения в таком виде малоэффективно, что обусловлено, главным образом, трудностями в выделении охлажденного потока из общей массы газа, прошедшего через сопловой ввод. Для случая нагрева в тонкостенной плохо проводящей тепло трубке с //d = 34 температура газа в полости трубки может на сотни градусов превышать температуру торможения возбуждающего потока. В работе [21] отмечается, что при степени расширения л = 5 и температуре перед сопловым вводом 20°С в конце трубки воздух нагревался до 500°С, а при наличии пыли, взвешенной в воздухе, отмечали температуры до 1000°С. Основной эффект нагрева в данном устройстве осуществляется за счет ударно-волно-вых процессов. При обтекании газовым потоком цилиндра более резкое снижение температуры обусловлено, кроме сказанного, значительными перепадами давления, затрачиваемого на сужение и расширение потока, созданием неустойчивого течения за цилиндром. Возникающие при этом пульсация, циркуляционные вихри, находящиеся в состоянии тепло- и массообмена с основным потоком, обусловливают большее понижение температуры по сравнению с обтеканием пластины. Необходимо отметить, что излучение звуковых колебаний в окружающую среду имеет место и в вихревой трубе. Кроме того, экспериментально доказано, что в вихревой трубе течение неустойчиво и возникают регулярные колебания давления. Нами было показано, что низкочастотные колебания являются следствием процеСсионного движения вынужденного вихря вокруг геометрической оси камеры закручивания. [c.32]


    Например, определенный вклад в сопротивление вносят вакансии, так как на них происходит рассеивание электронов. Концентрация вакансии экспоненциально зависит от температуры, а рост сопротивления, происходящий в результате действия дебаевских волн, прямо пропорционален температуре. Эти два эффекта могут быть разделены, и по температурной зависимости сопротивления можно определить характеристики вакансий (концентрация,.энергия образования). [c.349]

    Выше был выяснен смысл феноменологических коэффициентов в выражении (6.38) для декремента затухания амплитуд концентрационных волн. Температурная зависимость затухания в основном определяется второй производной по концентрации от удельной свободной энергии (с )/йс . Из выражения (6.38) следует, что при температурах, расположенных выше спинодали Т > Го), когда сР//с1с О, декремент затухания В (к. Г) есть полояштель-ная величина при всех значениях к. Обращаясь к выражению (6.31) для временной зависилюсти амплитуд концентрационных волн, можно видеть, что в условиях, когда. Д (к, Г) ]> О, концентрационные неоднородности рассасываются со временем, так как с (к, ) - О при оо.  [c.75]

    Для некоторых пластмасс Марголиным и Бражниковым была исследована температурная зависимость скорости продольных волн. Температурные коэффициенты Ь для всех пластмасс отрицательны, и величина их находится в пределах 1,7—10 м1сек-град. Значения температурных коэффициентов приведены в табл. 1-9, там же приведена величина Ь для полиэтилена по данным Хьюза, Бланкеншипа и Мимса Л. 28]. [c.37]

    Будем искать решение для больших значений времени. Естественно предположить, что печь, вызывающая волну температурного поля, вызовет стационарный процесс параллельпого переноса. Покажем, что волна является характерной особенностью хроматермографии. Будем, следовательно, искать решение по методу Далам-бера в виде волны  [c.167]

    Температурные свойства фосфора также в значительной степени определяются основанием и связаны с полонлснием его снектро] ноглощения и излучения. Б. А. Ястребов [593] указывает, что при сдвиге края полосы поглощения основного вещества в сторону длинных волн температурная устойчивость длительного свечения кристаллофосфора уменьшается, В. А. Ястребов связывает это поведение фосфоров с величиной поляризуемости катиона и аниона основного вещества (см. 53). Значительное влияние на спектры излучения оказывает и плавень применение Ba la вместо Na I вызывает сдвиг спектра в сторону длинных волн и небольшое удлинение продолжительности свечения ещё больший сдвиг спектров свечения в сторону длинных волн происходит при применении в качестве плавня буры и борной кислоты. [c.351]

    Таковы элементы акустических волн. Обратимся теперь к волнам температурным, которые Предводителев исследует в более обш,ей форме по сравнению с формой задачи, встречавшейся уже в гл. IV. Именно он полагает, что темперй1турнып импульс задан уравнением [c.839]

    Среди разнообразных физических явлений микроуровня отметим следующие локальные перегревы (температурные вспышки) до 1300 К в областях контакта частиц, имеющих площадь 10 - 10-5 2 в течение времени порядка Ю с локальные высокие давления до 10 Па, механоэмиссия и экзоэмиссия электронов. Под действием поверхност-но-активных веществ наблюдается эффект Ребиндера, приводящий к понижению их прочности [5]. Протекание процессов дробления существенно зависит от температуры например, при снижении температуры тела переходят из пластического состояния в хрупкое и стеклообразное. Направленное применение перечисленных явлений позволяет повысить эффективность процессов, а также активировать меха-нохимические процессы. Знакопеременные механические напряжения, возникающие при акустических воздействиях, также оказывают большое влияние на скорость и характер протекания процесса в твердых телах и на их поверхностях, на динамику дислокаций и микротрещин. Взаимодействие прямых и отраженных волн напряжений приводит к разрушениям типа откола и угловым разрушениям. [c.114]

    Пуск реактора по данной схеме производится следующим образом. На предварительно разогретый слой катализатора исходная реакционная смесь с низкой входной температурой подается через заслонку 2 (заслонка 1 закрыта). В центральной части слоя (А1) и в крайней части (А2) возникают тепловые волны (О] и Ь соответственно), которые движутся в направлении фильтрации реакционной смеси. Направления газовых потоков в частях слоя указаны непрерывными стрелками (см. рис. 6.21, а). Через некоторое время (время полуцикла) тепловая волна щ займет положение 02, а волна 1 - положение 2 (см. рис. 6.21, б). В это время заслонка 1 открывается, а заслонка 2 закрывается. Это приводит к разделению теплового пика Д2 на две тепловые волны. Одна из них будет распространяться по центральной части слоя (/ 1), а вторая - по крайней части (слой А ). Направления распространения тепловых волн совпадают с направлениями фильтрации смеси в слоях и показаны стрелками (см. рис. 6.21, б). Через время полуцикла тепловая волна 02 займет вновь положение О) (см. рис. 6.21, а). После этого цикл повторяется. При такой организации процесса центральная часть слоя работает в режиме переменных направлений фильтрации реакционной смеси, а тепло, вьщеляющееся в этой части, служит для попеременного нафева слоев А2 и Ау Крайние части слоя работают периодически в режиме нафева или формирования и вытеснения тепловой волны. Через несколько переключений во всех частях слоя устанавливаются периодически повторяющиеся температурные и конценфационные поля. [c.321]

    Коэффициент г может быть обусловлен зависимостью от температуры как первичного акта, в результате которого образуются активные реакции, так и вторичных процессов. Температурную зависимость первичного акта нужно, в частности, ожидать, когда реакция проводится в спектральной области, расположенной вблизи границы, ра.чделяющей сплошной и дискретный спектры поглощения, или же вблизи границы предиссоциации. В этих случаях, благодаря увеличению числа молекул на болсс высоких колебательных уровнях, те длины волн, которые при низких температурах приходятся на дискретный участок спектра поглощения, при повышении температуры могут окязаться в области сплошного поглощения или в области предиссоциации, в результате чего эффективность этих длин волн повышается. [c.169]

    Выжиг кокса в слое катализатора сопровождается формированием и перемещением по длине слоя температурных и концентращюнных волн. В качестве примера на рис. 4.6 показан характер регенеращ1И закоксованного слоя катализатора для следующего набора определяющих параметров х = 1,2% (об.), = 5% (масс.), з = 3,4 мм, время контакта (отношение объема реактора к объемной скорости подачи газового потока) Хк = 14 с (взяты из работы [162]), Tq = 480 °С. Как видно, в процессе выжига происходит формирование в слое катализатора характерного температурного профиля, который в дальнейшем перемещается в направлении движения газового потока. Качественно аналогичный результат получен и авторами работы [162]. Однако для данных условий не было обнаружено существование стационарного (перемещающегося без изменения температурного градиента) фронта горения в течение длительного времени. Это связано с тем, что в расчетах учтена осевая теплопроводность по слою катализатора, способствующая разукрупнению крутых температурных градиентов. Одновременно с движением температурного фронта происходит характерное изменение распределения по длине слоя средней относительной закоксованности. При этом в лобовом участке слоя из-за сравнительно низких температур скорость удаления кокса меньше, чем на последующих участках. Интересен следующий результат чем больше объемная скорость подачи (меньше время контакта), тем относительно больше кокса остается невыгоревшим [c.86]

Рис. П.1.7. Температурная зависимость поглощения гипер-звуковьк волн в циклогексане. Шлиховой линией нанесена классическая часть поглощения Рис. П.1.7. <a href="/info/26121">Температурная зависимость</a> поглощения гипер-звуковьк волн в циклогексане. Шлиховой линией нанесена классическая часть поглощения
    Пусть в момент времени / = О входная температура скачкообразно уменьшилась до величины 6о = — 7,5 и далее при любом I оставалась неизменной. Предполагается, что величина скорости химического превращения при этой температуре пренебрежимо мала. На рисунке видно, что с течением времени максимальная температура реакционной смеси в слое не только не уменьшилась, но даже увеличилась, приблизившись к некоторому пределу бщ . Температурный градиент в формирующемся фронте выше стационарного, а при 4 4 он остается практически неизменным. Фронт сформировался. Теперь по слою катализатора с неизменной скоростью перемещается тепловая 0( , 1) и концентрационная 4) волны (фронты), которые в системе координат г = Г—ш1 остаются неизменными (здесь I — длина слоя катализатора, м — скорость движения фронта). Тепловой фронт гетерогенной химической экзотермической реакции, как показано ниже, обладает рядом чрезвычайно интересных свойств. Среди них, например, такое разность между максимальной температурой во фронте От и входной температурой реакционной смеси Во может быть во много раз больше величины ДЭадЛ р (бтах), где Хр (0тах) — равновесная степень превращения при максимальной температуре во фронте. [c.79]

    ДГад > 800°С в слое катализатора устанавливается температурный режим, близкий по своему характеру к режиму стоячей волны. Можно легко убедиться, что зависимость тах= Гтм(АГад) ДЛЯ рассматриваемого случая подчиняется закономерностям поведения максимальной температуры в тепловом фронте. [c.115]

    Цель расчета по модели - определение влияния цйклическог зменения входных параметров на выход целевого продукта. Исследования проводились в следующих направлениях 1) выбор канала для нанесения возмущений 2) выбор фор кШ возмущающих воздействий 3) влияние изменения концентрации диоксида углерода в газовом потоке на входе в реактор а) на температурный режим потока б) на температуру в слое катализатора в) на качество образующегося метанола (с точки зрения образования примесей и увеличения концентрации воды). Выбор канала для нанесения возмущений выполнен с учетом возможности изменения параметров в промьппленных условиях. Для интенсификации процесса выбран расход диоксида углерода, который приводит к изменению концентрации Oj во входном потоке. Расчет технологических режимов выполнялся для случаев синусоидальной, прямоугольной и трапециевидной форм возмущающих воздействий. Анализ полученной информации показал целесообразность использования симметричных прямоугольных волн д.чя увеличения выхода метанола по сравнению с традащионным стацнон шы.ч режимом. При этом изучалось влияние периода возмущающих воздействий и их амплитуды. Установлено, что прирост производительности по метанолу в большей степени зависит от периода цикла, чем от амплитуды. Расчеты показали, что рабочий диапазон изменения температуры и расхода СО2 при реализации циклических режимов совпадает с диапазоном, определенным стационарными условия 1и проведения процесса. [c.65]

    Длина рассеяния нейтронов покоящимся ядром не зависит от угла рассеяния (рис. III.4), кривая а). Тепловые колебания атомов в твердых телах и в молекулах, амплитуды которых достигают 10% межатомных расстояний, размазывают плотность точечного ядра по объему, поперечником которого нельзя пренебречь по сравнению с длиной волны излучения. Появляется амплитудный температурный форм-фактор, определяемый множителем Дебая — Валлера е , который учитывает влияние тепловых колебаний частиц кристалла на их рассеяние (см. гл. V). Длина рассеяния Рис. III.4. Длина рассея-частицы (ядра или атома в целом) при ния нейтронов а) нокоя- [c.81]

Рис. 11.1.8. Температурная зaви иJ мость поглощения гиперзвуковых волн в диэтиловом эфире, штриховой линией нанесена кларсическая часть поглощения Рис. 11.1.8. Температурная зaви иJ мость поглощения <a href="/info/392400">гиперзвуковых волн</a> в <a href="/info/1007">диэтиловом эфире</a>, штриховой линией нанесена кларсическая часть поглощения
    На рис. УП.4.3-УП.4.16 представлены кривые температурной зависимости величин с" исследованных жидких алканов. Из графиков видно, что для всех исследованнь х жидкостей величшш " с изменением температуры проходит через максимум или стремится к нему. Резко выраженная температурная зависимость диэлектрических потерь позволяет сделать вывод о существовании в исследуемых алканах дипольной поляризации, т.е. релаксационном Щерезонансном) характере поглошения электромагнитных волн в диапазоне СВЧ. [c.128]

    Установлено, что коэффициенты теплопроводности аморфных полимеров (рис. 10.1, 10,2) с повышением температуры до области стеклования увеличиваются, а у частичио-кристалличе-скнх полимеров (рис. 10.3, 10,4) уменьшаются вплоть до температуры плавления. Следовательно, характер температурной зависимости X качественно согласуется с зависимостью для низкомолекулярного неметаллического образца, где теплопроводность рассматривается как результат колебательных движений молекул. В диэлектриках механизм теплопроводности — это колебания атомов около положения равновесия в решетке, иначе говоря, тепловое движение в них связано с распространением плоских упругих волн, длпны которых зависят от степени теплоизоляции и температуры. Эти упругие волны, распространяясь от горячей части полимера к холодной, переносят определенную порцию энергии и этим выравнивают температуру образца, что для кристаллических и аморфных полимеров происходит по-разному. Для первых [c.255]

    В случае гладкой поверхности появление волн отделения приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру волны отделения и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров. [c.362]

    Так как размеры атома соизмеримы с длиной волны X массбауэ-ровского излучения, между волнами, рассеянными отдельными электронами, возникает разность фаз, что приводит к зависимости /н от угла рассеяния и длины излучения к. Тепловые колебания решетки как бы размазывают атом в пространстве, в результата чего зависимость /д от угла рассеяния при изменении тепловых колебаний атома будет меняться (рис. XII.2, а). Температурный фактор, определяющий влияние тепловых колебаний атома на величину атомной амплитуды рассеяния/д, равен известному фактору Дебая — Валлера при рассеянии рентгеновских лучей, который записывается обычно как [c.229]

    Эффективным способом воздействия на вещество является использование лазерного излучения мощных потоков световой энергии в узких интервалах, что позволяет осуществлять реакции избирательно. Используя лазерное излучение определенной длины волны, можно направлять в нужном направлении химический процесс с применением его для инициирования высоко-температурньЫ и плазмохимических процессов, испарения и разложения нелетучих веществ, качественного и количественного анализа вещества, исследования механизмов химических реакций и т. д. [c.183]

    При работе с нерегистрирующими приборами и с приборами, в которых температурное смещение спектров очень мало по сравнению с шириной аналитических полос, измерения ведут при определенном значении длины волны, которое контролируют по шкале прибора. На приборах, у которых температурное смещение спектров велико, трудно по шкале прибора установить длину волны точно в максимуме полосы поглощения. Поэтому для каждой анализируемой пробы записывают при достаточно медленной скорости разпертки небольшой участок спектра, включающий максимум аналитической полосы. [c.336]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    К физическим факторам могут быть отнесены температурный—нагревание растворов выше 50—60° С многократное чередование замораживания и оттаивания денатурация под высоким давлением в 1000 кг/см и выше так, напрнмер, ферменты трипсин и химотрипсин при pH 5,0—5,2 под воздействием давления 7750 кг см через 5 мин инактивируются на 50% денатурация при воздействии ультразвуковых волн связана с разворачиванием молекул, а при более сильном воздействии ультразвука происходит даже paзpyшefIi e ковалентных связей при образовании мономолекулярных пленок на поверхности белковых растворов наблюдается так называемая поверхностная денатурация белка ультрафиолетовые лучи и ионизирующая радиация вызывают химические говреждеиия белковой молекулы, разрушая водородные связи, окисляя дисульфидные группировки, обусловливают исчезновение нативных третичных и вторичных структур белка. Интересными также являются наблюдения, указывающие на процессы денатурации, происходящие при старении белков. [c.209]


Смотреть страницы где упоминается термин Волны температурные: [c.86]    [c.504]    [c.193]    [c.86]    [c.40]    [c.9]    [c.9]    [c.88]    [c.33]    [c.143]   
Физика моря Изд.4 (1968) -- [ c.7 , c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте