Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сжигание и окислителя

    Принципиальным отличием ракетного двигателя является то, что он работает независимо от окружающей среды. При сжигании горючего в ракетном двигателе используется не кислород воздуха, а специальный окислитель, запасы которого должны быть на борту летательного аппарата. В ракетных двигателях могут применяться в качестве топлива вещества, способные выделять тепловую энергию, и газообразные продукты в результате разложения, ассоциации, ядерных процессов или других реакций без участия окислителя. [c.116]


    В элементах третьей группы работа ХИТ осуществляется благодаря подаче компонентов электрохимической реакции к электродам. Такие элементы могут работать без перерыва длительное время, лимитируемое потерей каталитических свойств элект )одов. Обычно на один из электродов (отрицательный) подается топливо, на другой (положительный)—окислитель, и в элементе происходит холодное электрохимическое сжигание топлива в виде двух расчлененных реакций иа одном электроде окисляе ся топливо, на другом — восстанавливается окислитель. Такие электрохимические системы называются топливными элементами. [c.208]

    В зависимости от условий, в которых происходит сжигание топлива, от начального физического состояния горючего и окислителя, от аэродинамики их движения, пламена приобретают характерные признаки, по которым их можно классифицировать. [c.113]

    Конструкция АГГ разработана на принципиально новой теоретической основе с применением акустического резонатора, создающего мощный вихревой эффект смешения топливного газа с атмосферным воздухом. Сочетание враш,ательного и поступательного движения газовоздушной смеси приводит к появлению зоны осевых обратных токов, росту центробежных сил, интенсивному перемешиванию компонентов и пропорциональному распределению газа в объеме окислителя. На выходе из горелки вихревым движением смеси создаются большой угол раскрытия зоны горения и настил пламени на излучающую стенку огнеупорной кладки топки с малой осевой дальнобойностью, а наличие зоны разрежения по оси закрученного потока способствует возникновению встречного высокотемпературного потока дымовых газов из топки, который стабилизирует фронт настенного горения (иначе называемого настильное сжигание топлива ).  [c.65]

    Приготовление активированного окислителя для сжигания водорода и предельных углеводородов в приборе ВТИ 2 [c.36]

    Смесь горючего исходного материала с окислителем в определенном соотношении, необходимом для осуществления процесса горения с учетом получения заданного продукта, называется горючей смесью. Полученные продукты при осуществлении этих окислительных реакций называются продуктами сгорания. Системная теория печей рассматривает проблемы промышленного оформления процессов безопасного сжигания исходных горючих материалов на базе современной теории горения. Она рассматривает вопросы создания с помощью аэродинамических приемов оптимальных условий для управления процессами сжигания с заданной скоростью, температурой и с получением пламени необходимой геометрической формы, определяющих способ взаимодействия горючего и окислителя и обусловливающих вид процесса сжигания. Она рассматривает возникающие взаимосвязи при горении исходных материалов, совместимость протекания реакции горения топлива с целевыми химическими реакциями в одном объеме, особенности химического взаимодействия между реагентами при химико-технологическом сжигании. Протекание процесса сжигания исходных горючих материалов рассматривается совместно с теплотехническими процессами. Для протекания реакции горения исходных горючих материалов необходимы смесеобразование, организация воспламенения смеси, обеспечение условий распространения пламени и устойчивости горения. [c.29]


    I. Смесеобразование. Для организации процесса сжигания исходных горючих материалов необходимо перемешивание их с окислителем, обеспечивающее контакт между ними. При сжигании жидких горючих материалов ускоряется нагрев и испарение, что обусловливает интенсивное сгорание горючего до продуктов полного или неполного окисления в минимальном объеме камеры горения. [c.29]

    Характерным для химико-технологического сжигания исходных материалов является коэффициент расхода окислителя, который может быть меньше, больше или равен 1. [c.36]

    На формирование пламен оказывают влияние следующие факторы химический состав горючего и окислителя начальные и физические состояния реагентов внд сжигания внешние силы, воздействующие на пламена методы стабилизации пламен элементы печной системы технические приемы и т. д. [c.64]

    Температурный режим исходных материалов и полученных продуктов является определяющим по отношению к другим. Создание и строгое соблюдение этого режима является одним из главных условий нормального протекания целенаправленных превращений исходных материалов и полученных продуктов. Температурный режим исходных материалов и полученных продуктов создается за счет температурных режимов печной среды, футеровки или их совокупности. В процессах сжигания горючих исходных материалов температурный режим в них создается и регулируется расходом окислителя, а при его недостаточности — введением газовой печной среды, а также интенсивным теплоотводом через футеровку. [c.114]

    Материалы-теплоносители должны использоваться для нагрева воды, воздуха, исходных материалов основных термотехнологических процессов, получения пара и т. д. Для этих целей применяются рекуператоры, регенераторы, котлы-утилизаторы и другие теплообменники. Нагретый воздух из рекуператоров и регенераторов используется для сжигания топлива как окислитель, что дает возможность не только экономить топливо, но и достигать более высоких температур в рабочей камере печей. [c.125]

    При выборе типа сжигательных устройств необходимо рассматривать условия смесеобразования горючих материалов и окислителя с зажиганием и горением этой смеси в рабочей и топочной камерах печей во взаимосвязи для обеспечения рационального сжигания. Вследствие этой взаимосвязанности необходимо совместно оценивать и выбирать сжигательные устройства с объемом рабочей и топочной камер, их геометрию, а для отдельно стоящих топок — компоновку с печью. Необходимо, чтобы сжигательные устройства и конструкция футеровки обеспечивали очаг горения горючих материалов с окислителем, который должен подаваться в достаточном количестве для обязательного завершения процесса горения в рабочей или топочной камерах при условии непрерывного удаления образующихся продуктов горения. [c.153]

    При сжигании в печах и топках жидкого топлива наиболее целесообразна установка нескольких форсунок. При этом принимаются во внимание следующие соображения 1) в форсунках малой производительности тоньше распыливание топлива, более лучшее смешение топлива с окислителем, что создает более короткое пламя горения, а следовательно, более компактнее и совершеннее конструкция топки 2) прекращение работы одной из форсунок не влечет за собой остановку печи 3) зажигание потухшей форсунки от соседних работающих форсунок производится без затруднений 4) упрощается регулирование теплопроизводительности в печи путем изменения числа работающих форсунок вместо изменения расхода топлива в одной форсунке. [c.157]

    В простейшей форме сжигание углеводородов в факеле сводится к следующему. В процессе горения молекулы топлива нагреваются и вступают 1В реакцию с молекулами окислителя образующиеся при этом продукты горения содержат в основном воду и двуокись углерода. Одновременно имеют место реакции термического крекинга, в результате которых образуются углерод, ненасыщенные соединения и полимеры. [c.50]

    При повышении температуры скорость распада комплекса становится больше скорости его образования. При распаде кислородсодержащего комплекса могут образоваться СО и СО2, соотношение которых зависит от среды, кинетических и диффузионных факторов, поверхностной энергии углерода и определяет суммарный тепловой эффект реакции. Чем меньше в продуктах разложения СО, тем выше тепловой эффект реакции. В избытке окислителя продукт распада комплекса — СО имеет тенденцию к окислению. Это происходит в процессе сжигания углерода в избытке кислорода. При его недостатке или контакте углерода с СО2 в продуктах реакции могут находиться оба окисла углерода одновременно. [c.124]

    Однако это уравнение весьма приближенное, так как очень трудно осуществить полное горение при стехиометрическом соотношении топливо —окислитель (кислород или воздух). Для достижения полного сжигания всегда требуется некоторый избыток окислителя. Если это условие не соблюдается, то некоторое количество топлива не будет сгорать до СОг и будут образовываться продукты неполного сгорания, в которых присутствуют окись углерода, водород, ненасыщенные углеводороды, формальдегид (иногда элементарный углерод). Если процесс горения остановить на промежуточной стадии, то количество высвобождаемого тепла будет значительно ниже. Для того чтобы быть уверенным в полном завершении процесса образования продуктов неполного горения, необходимо подвести дополнительное тепло, количество которого превышает количество тепла, выделяемого при реакции их образования. Процесс сжигания осложняется также цепным характером протекания реакций горения через образование промежуточных соединений перед появлением конечного продукта. Промежуточные соединения представляют собой химически недолговечные образования и радикалы, которые способствуют протеканию процесса горения и поддерживают его постоянным. Рассмотрим цепную реакцию горения метана  [c.97]


    Физика окисления. Хотя наличие химических компонентов, участвующих в процессе горения, т. е. топлива и окислителя, — весьма важная предпосылка для начала самого процесса сжигания и образования радикалов, поддерживающих устойчивость пламени, все же необходимы и определенные физические условия, обеспечивающие воспламенение и поддержание горения. В первую очередь это касается необходимости поддержания таких расходов [c.98]

    Кинетические и диффузионные пламена. Сжигание жидких углеводородов осуществляется с обязательным предшествующим испарением и, следовательно, с образованием диффузионного пламени, которое по своему характеру может быть турбулентным и светящимся, а сжигание газообразных углеводородов может осуществляться в двух совершенно отличных друг от друга типах горелочных устройств. При сжигании с предварительным смешением в устройствах осуществляется предварительная (до воспламенения) подготовка смеси первичного воздуха с топливным газом. Степень перемешивания различна от нескольких процентов до 100 % сте-хиометрической смеси. Диффузионное горение возникает при взаимодействии струи газа с окружающей атмосферой, когда весь необходимый воздух поступает непосредственно во фронт горения пламени до перемешивания с газом. Горючие газы и кислород должны диффундировать в противоположных направлениях из зоны горения и в нее. Вполне понятно, что устойчивость такого пламени будет тем выше, чем дольше сохраняется неизменным соотношение газ—окислитель, а сжигание в нем тем полнее, чем больше в топливе легких углеводородов (в этом случае необходимое соотношение газ—воздух достигается быстрее и легче, чем при сжигании углеводородов с более сложными и тяжелыми молекулами). На практике в атмосферном воздухе по этой схеме могут сжигаться только водород и метан. Во всех других случаях, если не осуществлять предварительной подготовки, будут наблюдаться интенсивная турбулентность в пламени, шум и неполное горение с образованием углерода. [c.100]

    Во время сжигания СНГ при стехиометрическом количестве или небольшом избытке окислителя выделяется определенное количество тепла, которое невозможно утилизировать полностью. Прежде всего неизбежны различного рода потери. В связи с этим под эффективностью сжигания понимается отношение полезно используемого в данном технологическом процессе тепла ко всему теплу, которое выделяется топливом. [c.106]

    Течение процесса теплогенерации в зоне технологического процесса определяется при автогенном режиме потенциальными энергетическими возможностями сырьевых материалов и быстротой взаимодействия материала и реагента (окислителя). При топливном режиме потенциальные возможности теоретически неограничены и определяются расходом топлива на единицу материала. Однако при низких значениях теплового эквивалента топлива расход топлива становится столь большим, что применение топливного режима становится нецелесообразным по экономическим соображениям или даже невозможным. Например, метан имеет теплоту полного сгорания около 800 МДж/моль. Если мы по методу погруженного сжигания используем метан как топливо в ванне расплавленного никеля при температуре 1600 "С, то по формуле (36) можно получить предельное значение коэффициента использования топлива т]к.и.т 0,625. Это означает, что 62,5% химической энергии метана мо-жет быть использовано для нагрева никелевой ванны. Сделав тот же расчет для ванны расплавленной стали при 1600°С, учтя, что водород окисляться не будет, а углерод окислится только до СО, получим возможную теплоту сгорания метана в жидкой стали 36 МДж/моль. [c.47]

    При расчете теоретической температуры сгорания для ракетных топлив баланс составляется аналогичным образом для заданной смеси горючего и окислителя. Однако в этом случае из-за высокой температуры становятся существенными обратные реакции диссоциации, протекающие с поглощением тепла (см. гл. 4). Из-за реакций диссоциации тепловой эффект уменьшается. Расчет в целом становится достаточно сложным необходимо найти состав продуктов сгорания и температуру. В случае же сжигания природных топлив или продуктов их переработки с использованием в качестве окислителя воздуха (топки паровых котлов, камеры сгорания газовых турбин и воздушно-реактивных двигателей, двигателей внутреннего сгорания) температура не столь высока, и с реакциями диссоциации можно не считаться. Для расчетов пригодна формула типа (1-9). [c.16]

    Из литературных источников известно,что ускорить процесс окислении гудрона можно используя окислители, катализаторы и инициаторы окисления. В данной работе показана возможность использования в качестве катализаторов окисления отхода кожевенного производства, образующегося при сжигании сточных вод в виде порошкообразной золы, и отработанного ванадиевого катализатора после процесса окисления 0 в 5 . Оба отхода в настоящее время сбрасываются в отвалы, загрязняя окружающую территорию. [c.84]

    В металлах, атакже в некоторых сульфидных рудах, серу часто определяют методом сжигания при высокой температуре в струе кислорода или с добавкой окислителей, например двуокиси свинца. В последних двух случаях продукты окисления поглощают водой иногда для полного окисления Н ЗОз в Н ЗО необходимо прибавлять к воде перекись водорода. Способы, основанные на сжигании в струе кислорода, удобны тем, что раствор образовавшейся серной кислоты не содержит мешающих ионов. [c.160]

    В рассматриваемом случае AG = —56,69 ккал/моль и, следовательно, только приблизительно 11 ккал/моль переходит в тепло. Этот пример показывает, что вообще энергию, освобождающуюся при горении природных видов топлива, выгоднее непосредственно преобразовывать в электрическую, так как к. п. д. тепловых машин и тепловых электростанций невелик. Описанный водородно-кислородный элемент является примером так называемых топливных элементов. Работы по созданию таких элементов получили в последнее время широкое развитие в связи с новыми задачами техники. В этих элементах топливо и окислитель должны храниться отдельно и подаваться к электродам, на которых осуществляются электрохимические реакции. При этом элемент может работать непрерывно, если к нему подводятся реагенты и отводятся продукты реакции, что особенно удобно при использовании жидких и газообразных веществ. В принципе возможно вместо сжигания угля использовать реакцию С (т) + + О2 (г) = СОа (г) для получения электрического тока. [c.154]

    Вследствие высокого сродства атомов кислорода к электрону кислород является сильным окислителем. По сравнению с другими простыми веществами он уступает в этом отношении только фтору. Высокая окислительная способность кислорода определяет его важную роль в жизнедеятельности человека и различных животных организмов (процессы дыхания), в формировании горных пород, в очистке природных вод. Окислительная способность кислорода широко используется при сжигании различных видов топлива, во многих промышленных и других процессах. Большей частью при этом пользуются не чистым кислородом, а воздухом, но при необходимости интенсификации процесса в металлургической и химической промышленности в настоящее время во многих случаях применяют чистый кислород или обогащенный им воздух. [c.139]

    Сжигание водорода в атмосфере озонированного кислорода происходит очень интенсивно, так как озон является еще более сильным окислителем, чем кислород. [c.417]

    Очистка сточных вод от растворенных органических примесей. Обезвреживание сточных вод, содержащих органические примеси, проводят деструктивным и регенеративным методами. К деструктивным методам относится термоокисление и электроокисление. Термоокисление заключается либо в сжигании сточных вод совместно с топливом (огневое обезвреживание), либо в окислении примесей кислородом воздуха, озоном, хлором и другими окислителями. При электроокислении сточные воды пропускаются через электролизер, в котором происходит электрохимическое окисление органических примесей на нерастворимом аноде. Например, фенол окисляется на аноде до оксида углерода и малеиновой кислоты [c.396]

    Хлор и ш,елочь применяются в целом ряде областей промышленности. Особенно быстро растет потребность в хлоре в связи с бурным развитием хлорорганического синтеза. В технологии неорганических хлоропродуктов широкое распространение получило производство синтетического хлористого водорода сжиганием водорода в хлоре, производство четыреххлористого кремния, хлоридов цинка и алюминия, хлорной извести, гипохлорита и ряда других соединений. В металлургии некоторых цветных металлов (никель, кобальт и др.) хлор применяется в качестве сильного окислителя. [c.373]

    Определение углерода и водорода сжиганием в токе кислорода. Определение углерода и водорода в органических веществах основано на сжигании этих веществ в токе кислорода в присутствии или отсутствии твердых катализаторов или окислителей. Навеску, как правило, сжигают в кварцевой трубке, а указанные элементы определяют в виде образовавшихся диоксида углерода и воды. Из катализаторов лучшим является металлическая платина. Применяют и другие катализаторы алюминий, олово, серебро. [c.811]

    Энтальпии образования цис- и транс-изомеров дифтордиазина определили одновременно Армстронг и Маранц [118], а также Панкратов и др. [110]. Армстронг применил предложенный им метод сжигания окислителя в аммиаке и нашел, что для цис-изомера АЯ/, 298 равна 16,4 1,2, а для транс-изомера — 19,4 1,2 ккал/моль. [c.60]

    В трубке для сжигания водорода и предельных углеводородов помеп.ена гранулированная окись меди (размер частиц 1,0— 2,5 мм) или специально приготовленный активированный окислитель. [c.32]

    Теплота экзотермических реакций исходных материалов может быть достаточной, меньше или больше, чем необходимо для осуществления термотехнологических процессов и компенсации тепловых потерь. Недостаток теплоты, выделяющейся при химических реакциях и физических превращениях, восполняется теплотой, получаемой в результате сжигания дополнительно вводимого в процесс топлива с окислителем. Избыток теплоты экзотермического источника отводится из термореактора и используется как вторичный энергоресурс. [c.52]

    Виды сжигания горючих материалов однородный, с предварительно перемешанной горючей смесью, с к оротким пламенем или с раздельной подачей горючего материала и окислителя для диффузионного горения с длинным пламенем. [c.64]

    Горелочные устройства второй группы, также как м первой, пред аз ачены для сжигания газообразного, жидкого топлива или их совместного сжигания. При этом конструкция этого типа горелок предусматривает регулировку подачи окислителя в широком диапазоне (возможно использование как полного предварительного смешения окислителя с топливом, так и частичной подачи окислителя к фронту пламени из окружающего пространства диффузией). Конструкции горелочных устройств этого типа для сжигания газа используют инжекцию газа воздухом. [c.106]

    При распаде поверхностного комплекса могут образоваться СО, СО2, Н2О и углерод (сажа), соотношение которых зависит от размера ядра ССЕ, кинетических и диффузионных факторов и определяет суммарный тепловой эффект реакции. В избытке окислителя продукты распада комплекса — СО и С — имеют тенденцию к окислению. Это происходит в процессе сжигания топлива в избытке кислорода. При его недостатке в продукт т< сгорания могут находиться СО, СО2, Н2О и С одиовремепио. При определенных условиях выделяющееся прн реакции тепло может привести к саморазогреву топлива (папример, в присутствии катализаторов) и к его самовозгоранию. Температуру самовозгорания топлив важно знать для обеспечения нрави.чь-ных условий их хранения и транспортирования. Температура самовоспламеиепия топлив лежит в преде.аах 200—600"С. [c.216]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    Разнообразные пневматические форсунки, используемые для сжигания яидких топлив, можно условно разделить на форсунки с внутренней зоной смешения и внешней зоной смешения распьиштеля (окислителя) и сжигаемого топлива. Форсунки с внешней зоной смешения применяются в основном для сжигания маловязких топлив либо "легких", либо предварительно нагретых до относительно высокой температуры.  [c.78]

    Химическая потребность в кислороде (ХПК). Химической потребностью в кислороде называется его количество,, необходимое для полного окисления всех восстановителей (органического и неорганического происхождения), находящихся в воде. Количественное определение ХПК данной сточной воды производят сжиганием примесей сильными окислителями (двухромовокислым калием или иодатом калия) в кислой среде. В этих условиях все элементы окисляются углерод до СОг, сера до 80з, фосфор до Р2О5, водород до Н2О, только не учитывается кислород, расходуемый на окисление [c.223]

    Для германия и олова наиболее характерно валентное состояние со степенью окисления 4-4, а для свинца — со степенью окисления 4-2. Различную стабильность состояний 4-4 и 4-2 для этих элементов иллюстрирует опыт по окислению кислородом соответствующих простых веществ. Так, при сжигании германия, олова и свинца в атмосфере кислорода образуются, с одной стороны, двуокиси германия (IV) и олова (IV) (ОеОа и ЗпОа) и, с другой стороны, окись свинца (II) (РЬО). В то время как соединения двухвалентных германия и олова проявляют восстановительные свойства, соединения четырехвалентного свинца — сильнейшие окислители. Другая важная для общей характеристики подгруппы тенденция — п.зменеиие кислотно-основных свойств химических соединений. Обычно для этой цели рассматривают свойства окислов и гидроокисей. Поскольку элементы главной подгруппы IV группы образуют два ряда окислов (и гидроокисей), различающихся и по кислотно-основным свойствам, и по окислительно-восстановительной стабильности, удобно охарактеризовать эти тенденции в одной схеме (на примере гидратов окисей)  [c.185]


Смотреть страницы где упоминается термин Сжигание и окислителя: [c.120]    [c.618]    [c.29]    [c.121]    [c.75]    [c.106]    [c.113]    [c.36]    [c.657]    [c.19]    [c.75]   
Расчеты аппаратов кипящего слоя (1986) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Окислитель

Сжигание



© 2025 chem21.info Реклама на сайте