Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспропорционирование парафиновых углеводородов

Таблица 48. Теплоты Н°, константы равновесия Кгг, равновесные степени превращения х для некоторых реакций диспропорционирования н-парафиновых углеводородов Таблица 48. Теплоты Н°, <a href="/info/2838">константы равновесия</a> Кгг, <a href="/info/799553">равновесные степени превращения</a> х для <a href="/info/939174">некоторых реакций</a> диспропорционирования н-парафиновых углеводородов

    О механизме реакции диспропорционирования парафиновых углеводородов существуют различные точки зрения для алюмоплатиновых катализаторов, модифицированных хлором, предполагают следующее протекание реакций [45]  [c.30]

    Диспропорционирование парафиновых углеводородов [c.217]

    Олефины, содержащиеся в жидком продукте, могут образоваться в результате полимеризации этилена. Не исключено, что радикалы, образовавшиеся в результате конденсации радикалов, полученных из парафиновых углеводородов и олефинов, могут подвергаться диспропорционированию  [c.306]

    Однако образующиеся при каталитическом крекинге (вследствие реакции диспропорционирования водорода) предельные углеводороды относятся уже не к нафтеновому, а преимущественно к парафиновому ряду. [c.99]

    Реакция диспропорционирования происходите образованием парафиновых углеводородов с более низкой и высокой молекулярной массой  [c.30]

    Первая из этих реакций является лимитирующей стадией изомеризации парафинового углеводорода, образование продуктов крекинга и диспропорционирования обусловлено протеканием реакций (II) и (III) в присутствии водорода карбкатион вступает еще в одну реакцию  [c.37]

    Химизм этого процесса очень сложен и, вероятно, для каждого вида сырья индивидуален. В целом же в присутствии указанного катализатора по карбоний-ионному механизму происходят расщепление (крекинг) парафиновых и олефиновых углеводородов, деалкилирование цикланов (с отрывом или крекингом алкильных групп) и целый ряд вторичных превращений фрагментов перечисленных первичных реакций (изомеризация, перенос водорода, диспропорционирование олефинов, конденсация ароматических колец и др.). В результате этих реакций в условиях дефицита водорода (водород извне не подводится) и вывода из процесса некоторого количества углерода (в виде кокса на катализаторе) получаются продукты, химический состав которых придает им ценные товарные свойства. [c.447]

    Изомеризации парафиновых углеводородов сопутствуют реакции гидрокрекинга и диспропорционирования. Для каждого катализатора и углеводорода должны быть выбраны оптимальные условия, при которых эти побочные реакции сводятся к минимуму. [c.130]

    Изомеризация парафиновых углеводородов сопровождается побочными реакциями крекинга и диспропорционирования для подавления этих реакций и поддержания активности катализатора на постоянном уровне процесс проводится при давлениях водорода 2,0—4,0 МПа и циркуляции водородсодержащего газа. Кинетика и механизм реакции зависят от типа катализатора й условий проведения реакции. [c.178]


    После регенерации цеолита на воздухе селективность катализатора не восстанавливается, не восстанавливается и интенсивность полос поглощения гидроксильных групп. Если к цеолиту добавляют палладий или проводят реакцию не в атмосфере азота, а в водороде, соотношение углеводородов С3/С, в ходе реакции остается постоянным, содержание ненасыщенных соединений не увеличивается и интенсивность полос поглощения ОН-групп не меняется. Все эти данные показывают, что в ходе реакции структура поверхностных группировок претерпевает существенные изменения. Поскольку интенсивность полосы поглощения при 3640 см уменьшается пропорционально длительности проведения реакции, можно предположить, что уменьщение содержания гидроксильных групп вызвано крекингом. До того момента, как интенсивность полосы поглощения при 3640 см снижается на 80%, отложения кокса на поверхности катализатора проявляются слабо. Однако при большей продолжительности реакции образец быстро чернеет, а соотношение продуктов, характерное для карбониево-ионных реакций, резко меняется и приближается к соотношениям, типичным для термического крекинга. Некоторые особенности крекинга парафиновых углеводородов на цеолитах, в частности пониженное содержание олефинов и уменьшение выходов углеводородов С, и С 2, можно объяснить с помощью данных ИК-спектроскопии. Вполне вероятно, что крекинг протекает в соответствии с механизмом реакций диспропорционирования [c.333]

    А. И. Богомоловым и В. К. Шиманским (1957 г.) производилась оценка вероятности протекания того или иного процесса превращения жирных кислот, исходя из термодинамических данных изменения величины свободной энергии реакции нри заданной температуре. Если реакция энергетически оправдана, то даже нри очень малых скоростях эта реакция пройдет в течение геологического времени. Авторы пришли к выводу, что в условиях природного процесса нефтеобразования при относительно невысоких температурах наибольшее значение приобретают реакции неполной деструкции, кетонного превращения и абиогенного декарбоксилирования высокомолекулярных кислот реакции неполной деструкции и последующие реакции диспропорционирования водорода и радикалов обусловливают образование из органических остатков метановых, нафтеновых и ароматических углеводородов. Реакции декарбоксилирования приводят к образованию нормальных парафиновых углеводородов с числом атомов углерода на единицу меньшим, чем у исходной кислоты. Это очень важное обстоятельство. Поскольку для природных жирных кислот характерно четное число атомов углерода, то естественно ожидать, что в составах нормальных алканов будут преобладать те, у которых цепочки имеют нечетное число углеродных атомов. [c.141]

    Исследование каталитических свойств окислов ванадия и хрома, широко применяемых в качестве катализаторов дегидрогенизации, показало, что эти окислы катализируют также реакции гидрогенизации. Было проведено сравнительное изучение химических свойств и структуры, а также механизма реакций на этих катализаторах, показавшее существенные черты сходства и различия в их действии. Олефины способны гидрироваться иа всех этих катализаторах при атмосферном давлении. Гидрогенизация сопровождается изомеризацией. Ароматические углеводороды могут частично гидрироваться в присутствии окиси ванадия лишь при повышенных давлениях, тогда как окись хрома в этих условиях не активна. Ни один из этих катализаторов не катализирует реакций диспропорционирования водорода в циклоолефинах . Существенное различие обнаружено в действии данных катализаторов на спирты. В присутствии окиси ванадия спирты подвергаются гидрогенолизу до соответствующих парафиновых углеводородов. В сходных условиях в присутствии окиси хро.ма спирты претерпевают реакцию дегидрогенизации — конденсации с образованием кетонов. Была исследована структура обоих катализаторов найдено, что в случае окиси ванадия наблюдается геометрическое соответствие. [c.796]

    В газообразных продуктах деструктивного гидрирования, как и при каталитическом крекинге, преобладают бутаны, причем половина их приходится на долю изобутана. В жидких фракциях, однако, содержание разветвленных олефиновых и парафиновых углеводородов значительно уступает таковому в бензинах каталитического крекинга. Это находит объяснение в том, что здесь имеет место торможение реакций полимеризации олефинов и связанных с изомерными превращениями реакций диспропорционирования водорода реакциями прямого гидрирования кратных связей. [c.178]

    При алкилировании бензола этиленом и пропиленом в присутствии хлорида алюминия образуются такие побочные продукты, как парафиновые углеводороды С4—Сэ, н-пропилбензол н алкилбензолы с числом атомов углерода в алкильной группе, не соответствующем их числу у исходного олефина. Образование диалкилпроизводных, в основном мета- и пара-изоиеров, связывают с протеканием реакций изомеризации, диспропорционирования и переалкилирования изопропил- и диизопро-пилбензолов [232]. Содержание примесей в алкилате растет при повышении температуры реакции, концентрации катализатора и времени его контакта с алкилатом. Кинетические характеристики процесса образования примесей в интервале температур от 100 до 130 °С представлены на рис 6.10. [c.248]


    Состав ароматических углеводородов Сд был следующим (в вес. %) этилбензол 0,8 п-ксилол 23,4 л4-ксилол 52,4 о-ксилол 23,4. Селективность процесса диспропорционирования толуола в бензол и ароматические углеводороды С а составляет 93% Примененный катализатор обладал несколько повышенными гидрирующими свойствами, поскольку образовалось около 2 вес. % парафиновых и нафтеновых углеводородов. [c.283]

    Механизм превращения метанола в углеводороды чер( з стадии образования ДМЭ и этилена на цеолите Н-15М-5 исследовался методами газовой хроматографии и ЯМР (С ) [95]. Выявлено, что получающийся этилен при 250-400°С образует ион карбония с кислотными центрами Бренстеда. В дальнейшем реакция превращения проходит через конденсацию олефинов, диспропорционирование, с образованием линейных парафиновых и ароматических углеводородов. [c.79]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкилсерные кислоты, не образуя диалкилсульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый, изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропорционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококипящие углеводороды [И]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе серной кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    При каталитическом крекинге, в котором жидкие олефиновые углеводороды имеют преимущественно нормальное строение, а парафиновые — разветвленное, очевидно, изомеризацию олефинов стимулирует реакция диспропорционирования водорода. [c.116]

    При протекании реакции диспропорционирования парафиновых углеводородов на морденитсодержащих цеолитных катализаторах в продуктах реакции не обнаруживаются углеводороды с молекулярной массой выше исходного, так как имеет место реакция их гидрокрекинга [c.30]

    Таким образом, водород снижает скорости реакций изомеризации, гидрокрекинга и диспропорционирования парафиновых углеводородов в присутствиии сверхкислот. Как уже упоминалось, высказано предположение [27] об участии водорода в медленной стадии реакции изомеризации адсорбированных фрагментов на кислотных центрах катализатора. [c.37]

    Совсем недавно показана способность редкоземельноводородной формы цеолитов типа X и Н-формы морденита ускорять диспропорционирование парафиновых углеводородов [13]. Эта реакция также может представить практический интерес. [c.6]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    Отнюдь не умоляя заслуги П. Сабатье и В.Н. Ипатьева в развитии катализа, нельзя не отметить, что значительно больший вклад в разработку каталитических превращений углеводородов и создание новых эффективных катализаторов внес Н.Д. Зелинский им открыты и изучены дегидрогениза-ционный катализ шестичленных цикланов, явления необратимого катализа (диспропорционирования) он был одним из пионеров разработки дегидрогенизации парафиновых углеводородов в олефины и последних - в диолефины, а также алкиларомати-ческих углеводородов в гомологии стирола. Именно Н.Д. Зелинский широко использовал платину и палладий, а также и остальные благородные металлы, включая осмий, для каталитических превращений углеводородов и изучил их специфические особенности. [c.66]

    НЫ, ароматические и парафиновые углеводороды. Источником водорода при реакциях его диспропорционирования является дегидрирование нафтенов, полинафтенов и аналогичных соединений. Само диспронорционирование происходит путем сложных реакций необратимого катализа, сопряженного гидрирования и т. д. Конечным этапом таких каталитических превращений нефтей является метан и углерод в его разнообразных модификациях, а также высокоуглеродистые минералы. [c.336]

    В указанных процессах ( Цеоформинг и др.) протекают реакции превращения низкооктановых компонентов сырья (н-парафиновые углеводороды) в высокооктановые (изопарафиновые и ароматические углеводороды). Превращение углеводородов происходит в две основные стадии на первой — путем разрыва связей С-С парафиновых углеводородов с образованием промежуточных олефиновых фрагментов, на второй — путем перераспределения водорода в олефинах с образованием парафиновых и ароматических углеводородов. Попутно протекают реакции алкилирования промежуточными олефинами изопарафиновых и ароматических углеводородов, реакции диспропорционирования и изомеризации ароматических углеводородов и реакции изомеризации парафиновых и нафтеновых углеводородов. Реакции дегидрирования идут в незначительной степени [362, 363]. Одновременно происходит гидрогенолиз сернистых соединений с образованием сероводорода и соответствующих углеводородов. [c.357]

    При изомеризации побочно протекают в незначительной степени гидрокрекинг и диспропор1щовирование. При диспропорционировании образуются парафиновые углеводороды с более низкой и высокой молекулярной массой, нащ>имер  [c.785]

    Парафиновый углеводород, получаемый при той же реакции, образуется, вероятно, в результате диспропорционирования свободного алкильного радикала. Образование свободного алкильного радикала не исключает ни возможности образования перекисной кислоты, ни окисления за счет перекиси водорода. Однако Клазиус отдает предпочтение точке зрения, высказанной Броуном и Уокером [c.111]

    Химизм превращений парафиновых углеводородов можно представить в виде основных реакций распада тяжелых парафинов и вторичных реакций изомеризации, диспропорционирования водорода, циклизации, алкирования и т. д. [c.37]

    Важные исследования в области изомеризации парафинов были выполнены А. Д. Петровым и его сотрудниками. Диспропорционирование метильных групп в системе ксилолы—бензол в присутствии хлористого алюминия—изучал П. И. Шуйкин. Изомеризацию радикалов, входящих в состав как ароматических, так и циклических углеводородов, изучал еще в прошлом веке М. И. Коновалов. Следует также упомянуть работы И. П. Цукерваника в области алкилирования ароматических углеводородов спиртами в присутствии хлористого алюминия и ряд других исследований, работы по изомеризации парафиновых углеводородов А. П. Сиверцева, Р. Д. Оболенцева, многочисленные исследования А. Ф. Добрянского по крекингу нефтяных ( ракций и индивидуальных углеводородов с хлористым алюминием и по действию хлористого алюминия на ряд органических соединений, в том числе на сложные эфиры многоатомных спиртов, различные нерег] )уипировки под действием хлористого алюминия, изученные Д. П. Курсановым, Г. И. Гершензоном, и много других работ. Дан е перечислит), в кратком предисловии важнейшие работы советских химиков в этой области пе представляется [c.7]

    Характерным для процесса теторей является малая гидрирующая активность катализатора — побочные реакции гидрирования ароматических углеводородов протекают в минимальной степени. Ниже приведены данные о составе парафиновых и нафтеновых углеводородов, находящихся в сырье и образовавшихся в процессе диспропорционирования толуола (в мол. млн ) [1201  [c.288]

    При крекинге в основном происходит расщепление углерод-углеродных связей. Этот процесс является эндотермическим, поэтому ему благоприятствуют высокие температуры. Крекинг можно рассматривать как процесс, обратный алкилированию или полимеризации. Катализаторы крекинга обычно проявляют низкую селективность-наблюдаются вторичные реакции изомеризации, диспропорционирования и переноса водорода или алкильных групп (с алкилароматическими соединениями). В литературе сообщалось о проведении крекинга (в основном парафиновых и алкиларомати-ческих углеводородов) на цеолитах. [c.70]


Смотреть страницы где упоминается термин Диспропорционирование парафиновых углеводородов: [c.341]    [c.145]    [c.156]    [c.338]    [c.219]   
Смотреть главы в:

Термодинамика химических процессов -> Диспропорционирование парафиновых углеводородов




ПОИСК





Смотрите так же термины и статьи:

Диспропорционирование

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте