Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практическое использование электрохимических процессов

    Имеется целый ряд патентов на десульфирование ароматических соединений на электродах с высоким перенапряжением в нейтральной или щелочной среде, что указывает на практическую возможность использования электрохимических процессов в производстве красителей. Реакции обычно проводятся в щелочной среде на ртутном катоде 1361. Приведем несколько примеров таких реакций  [c.101]


    Она является функцией тока чем выше плотность тока, тем больше значение поляризации. Если потенциал становится более отрицательным, поляризацию называют катодной, если более положительным — анодной. Возникновение поляризации обусловлено замедлением электродного процесса. Можно считать установленным тот факт, что в основе зависимостей ф —/ и Дф —/ лежат кинетические закономерности, характерные для данной электродной реакции. Методы изучения особенностей поляризационных кривых потенциал — плотность тока называют вольтамперометрией. Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. Скорость многостадийной реакции определяется скоростью наиболее медленной стадии. Это представление справедливо и для электрохимической реакции. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса. Если изменить ход процесса, т. е. увеличить его скорость, то и налагаемое напряжение может уменьшиться и стать меньше обратимого потенциала. Уменьшение электродного потенциала по сравнению с обратимым и процесс, обусловливающий его, называют деполяризацией. Значение поляризационных и деполяризационных явлений при практическом использовании неравновесных электрохимических систем велико. Потенциалы поляризованных электродов определяют напряжение электрохимической цепи, а следовательно, и напряжение на клеммах химического источника тока, т. е. определяют энергетические затраты. Поэтому особенно важен выбор оптимальных условий проведения электрохимического процесса. [c.203]

    Теория коррозии блуждающими токами является наименее разработанной областью коррозионной науки. Объясняется это весьма большой сложностью различных процессов, происходящих в системе источник блуждающих токов — земля — подземное металлическое сооружение — источник блуждающих токов, а также взаимообусловленностью этих процессов (явлений), возникающих в разных частях этой системы. Большие трудности связаны с изучением особенностей протекания электрохимических процессов на границе почва — металл при протекании переменных по знаку, амплитуде, плотности и частоте блуждающих токов. Отсюда и сложность теоретического анализа этой системы. Так, теоретические исследования по выявлению распределения токов и потенциалов в указанной системе с использованием ЭВМ весьма громоздки и не всегда дают достоверные результаты, что резко ограничивает их практическое применение. Для получения достоверных данных необходимо использовать современные методы как математических, так и электротехнических, электрохимических, геофизических и ряда других специальных технических наук. [c.46]


    На всех эта 1ах развития электрохимии разработка теоретических представлений была тесно связана с решением вопросов практического использования электрохимических, процессов и явлений. [c.305]

    Практическое использование электрохимических систем, как химических источников тока или как электролитических ванн, всегда связано с проведением электрохимической реакции с конечной скоростью в одном определенном направлении. Естественные электрохимические процессы, например разрушение металлов при действии окружающей среды, также совершаются быстро. В этих условиях электрохимические системы уже не находятся в состоянии равновесия и их свойства значительно отличаются от свойств соответствующих равновесных систем. [c.281]

    Значение поляризационных явлений при практическом использовании неравновесных электрохимических систем очень велико. Потенциалы поляризованных электродов определяют напряжение на электролизере и на клеммах химического источника тока, а следовательно, и энергетические характеристики электрохимических систем. При выборе оптимальных условий проведения электрохимических реакций необходимо учитывать природу и величину перенапряжения, поскольку они определяют многие характеристики процесса, например структуру катодных металлических осадков, переход в продукт [c.499]

    Сравнению с областью низких потенциалов. Некоторые из электрохимических реакций не имеют химических аналогов, другие оказываются предпочтительными перед соответствующими химическими реакциями, что определяет перспективность практического использования процессов в области высоких анодных потенциалов для препаративного, и промышленного синтеза. Количество исследованных при высоких анодных потенциалах реакций с участием органических соединений велико. Ниже рассмотрены лишь некоторые наиболее важные и общие закономерности в основном на примере процессов в водных растворах. Преимущественное внимание уделено роли адсорбции органических соединений в общем процессе их окисления при высоких анодных потенциалах. [c.288]

    Применение сопряженных реакций. Вообще если продукт , получающийся в результате электрохимического процесса, достаточно быстро реагирует с одной из составных частей раствора и при этом регенерируется его первоначальная электрохимически активная форма, то имеет место заметное увеличение предельного тока. Это может иметь практическое значение, в первую очередь, для повышения чувствительности полярографического метода. В свое время еще Визнером было обнаружено [10, с. 12] значительное увеличение анодной волны окисления лейкоформы красного хинона в атмосфере водорода и в присутствии коллоидного палладия, что связано с восстановлением окисленной формы деполяризатора атомным водородом в лей-коформу. Сюда может быть отнесено и использование каталитического выделения водорода на примере полярографии ионов, платины, подробно рассмотренное С. Г. Майрановским [Ю]. [c.78]

    Концентрации вещества в идеальном растворе, как и парциальное давление в случае смеси идеальных газов, выражает свойство компонента раствора, независимо от природы вещества и от внешних условий. В реальных же растворах концентрация перестает быть величиной, полностью характеризующей раствор. Различные поправки, вводимые с целью количественного учета факторов, отличающих реальный раствор от идеального, далеко не всегда могут дать удовлетворительные результаты, да и то лишь ценой значительных усложнений. Это создает большие неудобства для практического использования обнаруженных закономерностей. Как уже указывалось, в случае реальных систем давление следует заменить летучестью, а концентрацию — активностью. Активность, а не стехиометрическая концентрация, является мерой реального действия веществ как в газовых системах, так и в растворах при любом установившемся равновесии, включая химические и электрохимические процессы, распределение между фазами и т. д. Весьма важно, что концентрацию можно заменить активностью, так же как и давление летучестью, только в уравнениях, характеризующих равновесие. Поэтому, например, закон распределения для любых систем примет вид [c.384]

    Использование электрохимических стадий в процессе термохимического разложения воды уменьшает общее число стадий в термохимическом цикле, упрощает технологию процесса, снижает рабочую температуру цикла, требует значительно меньшего напряжения и сопряжена с меньшими потерями энергии, чем прямой электролиз воды. Кроме того, такой комбинированный цикл делает доступными для практического использования ряд реакций, проведение которых обычными термохимическими путями затруднено или просто неосуществимо. [c.412]


    Итак, чтобы разобраться в кинетике электродных процессов п иметь возможность сознательно регулировать их скорость, мы должны хорошо знать закономерности, которым подчиняются отдельные стадии электрохимической реакции. А закономерности эти, как нетрудно понять, для стадий, связанных с подходом реагирующих веществ к поверхности электрода, существенно отличаются от закономерностей для стадии, включающей перенос электронов через границу раздела между электродом и раствором. Поэтому изложение кинетики электродных процессов принято делить на два больших раздела раздел, в котором рассматривается перенос реагирующих веществ к электроду, и раздел, посвященный закономерностям собственно электрохимической стадии разряда. Мы с вами не будем делать исключения из этого правила, но строгие математические выводы, характерные для обычного курса кинетики электродных процессов, постараемся заменить примерами практического использования обоих разделов электрохимической науки. [c.48]

    Величина электропроводности растворов имеет большое значение для протекания электрохимических процессов. На ее основе можно сделать рациональный выбор состава электролита, при котором непроизводительные затраты электроэнергии будут минимальными. Знание электропроводности растворов необходимо при составлении энергетических и тепловых балансов электролизеров и химических источников тока. С величиной электропроводности связана рассеивающая способность гальванических ванн, т. е. возможность получения равномерного осадка металла на участках покрываемого изделия, различно удаленных от анода. Однако использование данных по определению электропроводности не ограничивается только электрохимией. Кондуктометрия находит самое широкое применение как метод химического анализа, производственного контроля и научного исследования. Она обладает рядом преимуществ перед химическими методами анализа, так как позволяет определить содержание индивидуального вещества в растворе простым измерением электропроводности раствора. Для этого нужно только иметь предварительно вычерченную калибровочную кривую зависимости электропроводности от концентрации вещества. Кроме того, в процессе измерения электропроводности анализируемый раствор практически не изменяется, благодаря чему можно проводить повторные измерения и, сохранив его, в любое время проверить полученные результаты. [c.104]

    Впервые четкая формулировка тех преимуществ, которые может дать электрохимическое сжигание топлива, по сравнению с обычным химическим, была дана П. И. Яблочковым в восьмидесятых годах прошлого века. Тогда же ему был выдан и первый патент на топливный элемент. Позднее идея топливных элементов развивалась Оствальдом. Однако попытки создания топливного элемента, пригодного для практического использования, натолкнулись с самого начала на значительные трудности, связанные, прежде всего, с электрохимической инертностью угля. Даже при температуре порядка 1000° С скорость электрохимического окисления твердого топлива остается слишком низкой. Кроме того, элемент с твердым топливом быстро теряет работоспособность из-за накопления золы. Несколько эффективнее оказались элементы с косвенным использованием твердого топлива в качестве восстановителя. В таких элементах электрохимически активными веществами являются соответственно подобранные окислительно-восстановительные системы. Например, могут быть использованы следующие процессы  [c.491]

    Из сказанного следует, что реакции на положительном электроде МЦЭ в достаточной степени сложны. Несмотря на то, что практическое использование этой электрохимической системы насчитывает уже многие десятилетия, вопрос о природе токообразующего процесса [c.44]

    Однако для практического использования в электрохимических процессах в таких строгих требованиях к электродам нет необходимости. Достаточно иметь электроды, потенциал которых во все время измерения не изменяется больше чем на 5—Юме, но которые могут быть использованы и при более значительной силе тока. [c.429]

    В течение последнего десятилетия использование электрохимических методов определения газов в жидкостях и газовых смесях и приборов на основе этих методов в промышленных, полевых и лабораторных условиях непрерывно увеличивалось. Это связано с тем, что электрохимические методы анализа легко поддаются автоматизации и большинство электрохимических анализаторов газов являются автоматическими приборами. Измеряемый параметр в электрохимических методах имеет электрическую природу, что позволяет непосредственно использовать выходной сигнал в системах автоматического регулирования и управления контролируемыми процессами. Эти методы дают возможность осуществлять непрерывный анализ определяемых компонентов при практически мгновенном реагировании на изменение их концентрации. Существенным достоинством электрохимических методов анализа является также то, что анализируемый раствор после прохождения чувствительного элемента электрохимического анализатора практически не изменяет своего состава (за исключением кулонометрического метода). [c.5]

    Важным технологическим аспектом на пути широкого использования электрохимических методов для целей водоочистки является проблема поиска новых дешевых и доступных электродных материалов, удовлетворяющих одновременно требованиям высокой активности, селективности, химической устойчивости и экономии. В этой связи представляет большой практический интерес исследования института электрохимии АН СССР, ДХТИ, ГосНИИхлорпроекта и других организаций по разработке малоизнашивающихся пластинчатых, насыпных электродов из различных зернистых материалов (суспензионных), а также пористых, волокнистых и псевдоожиженных электродов, позволяющих существенным образом интенсифицировать электродные процессы. Так, применение псевдоожиженных электродов — взвесей частиц электродного материала в растворе, передающих при контакте с токоотводящим электродом свой заряд, обеспечивают протекание электродных процессов на границе каждой из частиц с раствором, что снижает диффузионные ограничения и позволяет сосредоточить в малом объеме большую поверхность для протекания реакции. [c.187]

    Используется очень быстрое импульсное изменение напряжения — до 800 в сек IИ ]. При этом скорость наложения потенциала выбирается так, чтобы за время импульса органическое вещество из раствора не успевало продиффундировать к поверхности электрода и прореагировать там, так что практически в реакции участвуют только адсорбированные частицы. С другой стороны, необходимо, чтобы за короткое время импульса все адсорбированные частицы полностью прореагировали, т. е. чтобы электрохимический процесс протекал достаточно быстро. Этот метод был нами использован в опытах, описанных ниже. [c.40]

    Для практического изучения закономерностей электролиза включены три лабораторные работы, представляющие собой типичные примеры важнейших электрохимических процессов, сравнительно легко осуществляемых в лабораторных условиях. Содержанием этих работ является исследование влияния основных параметров технологического режима, таких, как длительность процесса, концентрация электролита, плотность тока, скорость потока электролита, расстояние между электродами и т. п. на основные технологические показатели электролиза выход по току, степень использования энергии, расходные коэффициенты, качество продуктов и т. п. [c.298]

    TOB анодных процессов. В связи с этим практическое значение катодных процессов электрохимического синтеза металлоорганических соединений пока не столь велико, как анодных. Но это не значит, что катодные процессы не имеют перспектив. Дальнейшее изучение их откроет перед нами широкую дорогу к практическому использованию для получения металлоорганических соединений. [c.125]

    Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно. [c.10]

    При концентрировании больших количеств благородных металлов на ионитах (200—300% от веса адсорбента) мы встретили ряд практических затруднений, связанных с регенерацией смолы. Обычные химические Аштоды растворения золота п серебра (в кислотах, растворах тиомочевины и других растворителях) в данном случае оказались непригодными. Для выделения металлов из ионообменной смолы приходилось прибегать к сжиганию адсорбента, что было невыгодно в экономическом отношении. Это обстоятельство побудило нас к использованию электрохимических процессов для регенерации смолы и осуществлению вторичных (окислительно-восстановительных) реакций в качестве нового средства для концентрирования на ионитах больших количеств извлекаемых из растворов веществ. [c.238]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Основы электрохимии были заломсены исследованиями по гальваническим элементам, электролизу и переносу тока в электролитах. Гальвани и Вольта в Италии создали в 1799 г. гальванический элемент. В. В. Петров в России (1802) открыл явление электрической дуги. Т. Гротгус в России в 1805 г. заложил основы теории электролиза. В 1800 г. Дэви выдвинул электрохимическую теорию взаимодействия веществ он широко применил электролиз для химических исследований. М. Фарадей, ученик Дэви, в 1833—1834 гг. сформулировал количественные законы электролиза. Б. С. Якоби в России, решая вопросы практического использования процесса электролиза, открыл в 1836 г. гальванопластику. [c.7]

    В 1837 г. член Российской академии наук академик Б. С. Якоби опубликовал сообщение о разработанном им методе гальванопластики — получение металлических копий с рельефных изделий методом электролиза. Практическое использование гальванопластики началось с воспроизведения досок для печатания кредитных билетов (1832 г.). Было установлено, что точность и воспроизводимость получаемых методом гальванопластики клише для печатания государственных бумаг, в том числе денежных знаков, выше, чем при старом трудоемком процессе гравирования. Созданная в то время в Петербурге специальная гальванопластическая мастерская под названием Экспедиция заготовления государственных бумаг бь1ла первой в мире типографией, применившей гальванотехнику. В крупных для того времени масштабах электрохимический метод применялся в Гальванопластическом заведении , организованном в 1844 г. В Петербурге, где русские мастера изготовляли произведения искусства статуи и барельефы для Исаакиевского собора, Эрмитажа, Зимнего дворца, Петропавловского собора, медных коней для фронтона Большого театра в Москве и т. п. [c.9]

    Существенно, что в настоящее время при разработке новых коррозионностойких сплавов можно охгараться не только на опыт, накопленный в этом деле металлургами, или богатый опыт практического использования сплавов в промышленности, но и на достижения коррозионной науки, которой на протяжении последних двух десятилетий, главным образом в результате широкого и плодотворного использования электрохимических методов и подходов к ио-следованию коррозионных процессов, удалось установить и сформулировать важные взаимосвязи между коррозионным поведением сплавов, с одной стороны, и коррозионным поведением составляющих их компонентов, с другой. [c.5]

    Степень обратимости (или необратимости) электродной реакции зависит от отношения скоростей двух процессов переноса веществ к электроду и переноса электронов. Под необратимыми электрохимическими процессами в полярографии понимают такие процессы, при которых скорость подачи вещества к электроду сравнима со скоростью собственно электрохимической стадии или больше последней [30]. Для условий, обычно имеющих место в полярографии, при периоде капания I 2, сек практически обратимые волны наблюдаются при 2-10" см1сек. Полностью необратимые волны характеризуются величиной ка З-Ю см сек [10] перенапряжение в этом случае превышает 100 мв. При использовании вращающегося ртутного капельного электрода [31 — 34], скорость подачи вещества к которому значительно больше, чем к обычному капельному электроду, необратимость волн [c.9]

    Влияние адсорбции деполяризатора на скорость электрохимических процессов используется в третьей группе методов изучения адсорбции. К этим методам прежде всего относится хронопотенциометрия (съемка зависимости потенциала от времени при электролизе с заданной силой тока), о которой уже говорилось в предыдущей главе. Впервые хронопотепциометрию для определения количества адсорбированного на электроде деполяризатора применил В. Лоренц [3241 в последнее время появилось много работ, посвященных как теории, так и практическому использованию метода [325—330]. [c.65]

    Книга представляет собой краткое изложение теоретических основ и практического использования одного из современных высокоинформативных электрохимических методов — вольтамперометрии с линейной и треугольной разверткой потенциала. Рассматривается теория электродных процессов, контролируемых скоростями диффузии, переноса заряда, кинетикой предшествующих, последующих, каталитических химических реакций и последовательных электрохимических стадий. Детально разбираются критерии определения лимитирующей стадии электродного процесса. Подробно излагаются вопросы влияния адсорбции электроактивных веществ на форму и параметры вольтамперных кривых. Даны примеры исследования электродных процессов. Глава УП раздела первого издания Осциллографические полярографы написана канд. техн. наук Р. Ф. Салихджановой. В этой главе рассматриваются блок-схемы и принципы действия отдельных узлов и блоков осциллополярографов, а также дается описание серийных отечественных и зарубежных специализированных приборов, в которых одним из режимов работы является осциллографический. Таким прибором является, например, отечественный полярограф ППТ-1. [c.3]

    Теперь, когда мы рассмотрели в обгцпх чертах практическое приложение электрохимической науки, которое на первый взгляд довольно просто и понятно, остановимся более подробно на процессах, которые мы выбрали для иллюстрации практического использования электрохимии. [c.41]

    Рассмотренный пример относится к случаю, когда обе реакции протекают по законам электрохимической кинетики. Но уравнение, аналогичное выражению (У,15), можно было бы получить, воспользовавшись уравнениями реакций, например катодных, протекающих по законам диффузионной кинетики и осложненных концентрационной поляризацией (гл. IV, 9). Подробные исследования [10, 11, 12] показали, что полное аналитическое решение задачи является очень сложным. Таким образом, вывод уравнения (У,15), приведенный для примера, имеет главным образом методологическое значение. Практическое использование его принципиально возможно, но требует очень обширной информации о кинетике соответствующих процессов. [c.187]

    Для решения проблемы практического использования новых энергосберегающих технологий требуется создание и освоение более совершенного электрохимического оборудования, обеспечивающего проведение процессов получения химических продуктов с высокими техноэкопомическимп показателями. [c.244]

    Н[овые возможности обнаружения неустойчивых частиц в электрохимических процессах предоставляет импульсная вольтамперометрия с прямоугольной формой поляризующего напряжения, в которой катодная и анодная ветви поляризационной кривой регистрируются параллельно [23, 38]. Этот метод, в котором используется напряжение в форме прямоугольных импульсов с линейно растущей амплитудой, аналогичен коммутаторной полярографии, в которой реализуется такой режим работы коммутатора Калоусека, когда вспомогательный потенциал соответствует анодному предельному току окисления продукта, образовавшегося при электровосстановлении деполяризатора. Следует отметить важное преимущество, которое дает импульсный вариант коммутации изменение длительности прямоугольных импульсов и величины приращения их амплитуды [38] позволяет в больших пределах менять частоту переключения, которая для коммутатора Калоусека ограничена значением 100 гц, а практически — вследствие влияния тока заряжения — еще меньшей величиной. Использование принципов временной селекции емкостного и фарадеевского токов позволило авторам работы [38] значительно уменьшить помеху, т. е. ток заряжения, и расширить диапазон частот коммутации до 2000 гц. [c.47]

    А. П. Артемьянов (Институт химии ДВО АН СССР, Владивосток). Ранее была показана принципиальная возможность управления адсорбционно-десорбционными процессами посредством электрохимической поляризации углеродных электродов. В качестве адсорбентов использовались непористый графит и стеклоуглерод. С практической точки зрения углеродный адсорбент для электросорбции должен обладать большим диапазоном электрохимической поляризации и достаточно развитой удельной поверхностью. Увеличение удельной поверхности углеродных адсорбентов сопровождается уменьшением радиуса пор. Однако уменьшение радиуса пор неизбежно приводит к росту омического и диффузионного сопротивлений массопереноса при поляризации и, как следствие, к использованию в электросорбции не всей внутренней поверхности. Поэтому для оптимального применения пористых углеродных адсорбентов необходимо знать, насколько полно участвует их внутренняя поверхность в электросорбции. Для образцов разной пористой структуры методом потенциодинамических импульсов мы оценивали долю внутренней поверхности, участвующей в электрохимическом процессе. [c.98]

    Можно назвать еще следующие направления, по которым развивается современная ферментология изучение роли и действия отдельных факторов, влияющих на процесс,—температуры, pH среды, ее окислительно-восстановительного потенциала, концентрации субстрата и фермента изучение кинетики ферментативных реакций исследование специфичности ферментов — важнейшего свойства, определяющего их биологическую роль и возможности практического использования химического строения и действия ингибиторов ферментов, обратимого и необратимого, специфического и неспецифического торможения ими реакций изучение строения и функций различных кофакторов, в первую очередь специфических коферментов, их роли в каталитическом процессе, в обмене веществ исследование особенностей ферментных белков — состава, числа цепей, гидродинамических и электрохимических свойств, химической структуры далее — строения активных центров, их числа, их низкомолекулярных аналогов изучение механизма действия ферментов действия полифермент-ных систем и, наконец, образования ферментных белков, в том числе их биосинтез и образование из предшественников префер-ментов). [c.46]

    В последние годы в связи с развитием производства титана возникла возможность использования титановых токоподводов к графитовым электродам. В условиях анодной поляризации в растворах хлоридов щелочных металлов, определяемой потенциалом графитового электрода, титан покрывается окисной пленкой, защищающей металлическую поверхность токоподвода от коррозии и разрушения, и практически не участвует в электрохимическом процессе в качестве анода. Само собой разумеется, при этом необходимо предотвращать возможность образования окисных слоев с большим переходным сопротивлением на поверхности контакта графитового электрода с титановым токопод-водом . Это может быть достигнуто в результате пропитки графитового электрода в месте его контакта с металлом. [c.126]

    Рассмотрим некоторые примеры практического использования циклической вольтамперометрии в изучении сложных электрохимических процессов с участием промежуточных частиц. Не претендуя на исчерпывающее отражение всех работ по этому вопросу, отметим наиболее типичные, показывающие возможности Jv eтoдa или достигнутые успехи за последнее пятилетие. [c.32]


Смотреть страницы где упоминается термин Практическое использование электрохимических процессов: [c.57]    [c.233]    [c.459]    [c.803]    [c.72]    [c.8]    [c.131]    [c.412]   
Смотреть главы в:

Общая химия -> Практическое использование электрохимических процессов




ПОИСК





Смотрите так же термины и статьи:

Процесс электрохимический



© 2025 chem21.info Реклама на сайте