Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода растворами

    Почти с самого начала истории элементарного анализа химики делали попытки разработать метод прямого определения кислорода в органических соединениях. Однако определенные достижения в этой области имеются только за последнее время. Митчерлих [477] еще в 1841 г. занимался этим вопросом, а в 1867 г. предложил [478] методику прямого определения кислорода и водорода в органических веществах. Метод его основан на пиролизе вещества в присутствии углерода в токе хлора, причем водород удаляется в виде хлористого водорода, а кислород— в виде двуокиси и окиси углерода. Митчерлих поглощал хлористый водород насыщенным раствором ацетата свинца, двуокись углерода — раствором едкого кали, а окись углерода— раствором хлорида одновалентной меди. Несмотря на несовершенство аппаратуры, он получал в макроанализе (0,2—1 г вещества) очень точные результаты средняя ошибка не превышала 0,2%. [c.119]


    Во избежание поглощения окиси углерода (при анализе газов, содержащих окись углерода) раствор сульфата ртути насыщают [c.168]

    Кислород применялся газообразный в баллонах с содержанием 98— 99%Оа. Пробы газа анализировались на газоанализаторе ВТИ. Двуокись углерода определялась абсорбцией в растворе едкого кали, кислород поглощался раствором пирогаллола, окись углерода — раствором закиси меди и р-нафтола в концентрированной серной кислоте. Водород и метан определялись совместным сожжением в колонке над платиновой спиралью в атмосфере кислорода. Количество выделившегося углерода во всех случаях определялось по балансу углерода в поданном и полученном газе. Количество образовавшейся реакционной воды измерялось после каждого опыта. Кроме того, оно подсчитывалось по балансу кислорода и водорода. [c.350]

    Соединение o4( O)i2 представляет собой черные кристаллы, которые при температуре выше 60° разлагаются на металлический кобальт и окись углерода, растворяются в обычных растворителях и взаимодействуют с натрием, растворенным в жидком аммиаке. [c.578]

    Физические свойства и структура. Окись углерода — бесцветный газ, не имеющий запаха. При комнатной температуре окись углерода из-за низкой критической температуры не может быть превращена в жидкость только за счет повышения давления. В воде окись углерода растворяется очень мало (2,3 об.% при 20°). Остальные физические константы окиси углерода представлены в приводимой ниже таблице. Можно видеть, что физические свойства очень близки к свойствам молекулярного азота. Это сходство объясняется тем, что оба вещества имеют одинаковый молекулярный вес и одинаковое число электронов в их молекулах, а именно 14 электронов изоэлектронные молекулы, по Лэнгмюру). [c.479]

    На составные части газ может разделяться промывкой маслом на установке, работающей нод давлением, как описано выше (см. стр. 72). Пропан растворяется в масле, а низкомолекулярные углеводороды, окись углерода и азот удаляются из абсорбера. Другая / гп возможность разделения состоит в том, [c.154]

    Установка двух сосудов с аммиачным раствором полухлористой меди вызвана тем, что реакция поглощения окиси углерода идет с образованием сложных комплексных солей, легко отдающих окись углерода обратно. Поэтому в первом сосуде (5), поглощающем основное количество СО из газа, абсорбция не может дойти до конца, так как первый раствор всегда уже в той или иной степени насыщен. Полное извлечение СО из газа достигается только во втором сосуде (6), заполненном более активным аммиачным раствором полухлористой меди. По мере насыщения и отработки первого раствора его [c.243]


    Окись углерода (СО) (угарный газ) — горючий бесцветный газ, без запаха. Молекулярная масса 28,01, плотность по воздуху 0,967, температура кипения —191,5°С, температура плавления —205°С, слабо растворим в воде, почти не поглощается активным углем. [c.22]

    Неорганические газы, как азот, кислород, углекислота и окись углерода, также легко растворяются в нефти и ее продуктах. Коэффициент поглощения этих газов, по опытам с бакинским керосином, составлял при 20° С  [c.74]

    Необходимо иметь в виду, что сточные воды химических заводов могут содержать в растворе различные газы, например сероводород, водород, окись углерода и другие, которые, смешиваясь с воздухом, мш ут образовывать взрывоопасные смеси. [c.63]

    В результате процесса конверсии ОКись углерода конвертируется в водород, вследствие чего содержание последнего повышается от 35—45 об. % на выходе печи риформинга до 70— 75 об. % на выходе конвертера. Двуокись углерода, присутствующая в сырьевом газе и дополнительно образующаяся во время конверсии, затем удаляется в скруббере с помощью растворов аминов или углекислого калия, и поток почти чистого водорода рециркулируется после конечной стадии метанизации (для удаления следов окислов углерода) и смешивается с сырьевым потоком лигроина на входе подогревателя. [c.107]

    В Голландии этот метод определения кислорода является стандартным. Окись углерода превращают в углекислый газ при прохождении через окись ртути, СОа затем анализируют при пропускании через раствор титрованного барита. [c.51]

    I — метанол + катализатор 1 — окись углерода III — продукты синтеза IV — отработанный газ V — раствор катализатора V/ — метанол VII — кислота-сырец VIП — товарная уксусная кислота X — кубовый остаток на сжигание. [c.270]

    После очистки от этих компонентов в водороде остается окись углерода, от которой газ очищают медноаммиачным раствором. Этот метод требует довольно сложной и громоздкой аппаратуры, поэтому изыскиваются пути его замены метанированием или синтезом на основе окиси углерода. Полученная в процессе очистки окись углерода может быть возвращена в цикл или использована в качестве топлива. [c.163]

    Количество сгоревших углеводородов определяется но количеству получаемой углекислоты, для чего последнюю поглощают раствором щелочи в щелочном поглотителе. Чтобы удалить углекислоту, оставшуюся в фарфоровой трубке и гребенке, последние 2—3 раза промывают оставшимся газом до полного поглощения углекислоты. В процессе сгорапия, кроме углекислоты, может образоваться окись углерода, которую необходимо определить в аммиачном поглотителе. Оставшийся после сжигания предельных и поглощения окиси углерода и углекислоты газ состоит из азота и инертных газов. [c.838]

    Газ для синтеза аммиака обычно получают из исходного сырья, содержащего углерод. Окислы углерода, которые дезактивируют катализатор синтеза аммиака (гл. 7), должны быть удалены из синтез-газа перед его использованием. На большинстве современных аммиачных установок окись углерода конвертируют в две стадии с паром в двуокись углерода, абсорбируют СОа в скруббере и окончательно очищают синтез-газ метанированием остатков СО и СОа До уровня следов. Другие схемы очистки — такие, как абсорбция СО раствором меди или очистка путем низкотемпературной дистилляции (промывки) — обычно имеют более высокую эксплуатационную стоимость, а иногда также более высокие капитальные затраты, чем каталитическая очистка, но им все же может быть отдано предпочтение в некоторых случаях на отдельных заводах. [c.117]

    Если требуется чистая окись углерода, ее можно выделить из водяного газа или из других содержащих ее газов обычными методами, в первую очередь сжижением с последующей ректификацией или селективной абсорбцией под высоким давлением растворами солей одновалентной меди, например аммиачным раствором формиата и карбоната меди [1]. Реакции получения смесей окиси углерода и водорода различного состава используют в промышленности для осуществления ряда важнейших процессов (синтез аммиака, производство синтетического метанола, гидрогенизация угля). [c.46]

    Полученные из метана смеси окиси углерода и водорода переводят реакцией с избытком водяного пара в смесь двуокиси углерода и водорода. Двуокись углерода отмывают водой под давлением 25 ama или раствором этаноламина промытый газ затем компримируют до рабочего давления и удаляют окись углерода промывкой аммиачным раствором формиата одновалентной меди-. После этой обработки остается водород, пригодный для проведения синтеза аммиака. Азот получают двумя способами. По первому способу азот выделяют ректификацией ожиженного воздуха в этом случае кислород можно использовать для частичного сожжения метана. По второму способу сначала проводят конверсию метана с водяным паром при 700°, с тем чтобы в продуктах реакции осталось значительное количество непрореагировавшего углеводорода. Затем к горячей газовой смеси добавляют воздух в таком количестве, чтобы достичь нужного для синтеза аммиака [c.51]


    Окись углерода растворяется в гидрогенизате несколько лучше азота (см. табл. 4), но все же растворимость ее лишь в 1,5—2,5 раза вьшге растворимости водорода. Она может накапливаться в цирку-лируюш ем водороде, что потребует удаления СО с отдувом. Содержание СО в водороде, используемом для гидроочистки над катализаторами, содержащими сульфиды металлов, ограничивают до 0,5— 1,0%. В процессе гидроочистки тяжелых нефтепродуктов суммарное содержание окислов углерода в водороде не должно превышать [c.23]

    Реагенты, применяемые при общем анализе, и их приготовление. Отдельные компоненты газовых смесей рекомендуется в последнее время поглощать следующими реагентами кислые газы СОа и Н З — 30—50 %-ным раствором КОН [6, 15] кислород — раствором хлористого хрома или пирогаллола окись углерода — раствором однохлористой меди олефины — кислым раствором сернокислой ртути ацетилен — раствором иодмеркурата калия Кд (HgJ ) диеновые углеводороды — малеиновым ангидридом, а отдельные олефины — серной кислотой различной крепости — 65, 70 и 85% [6, 15]. [c.49]

    В литературе высказывалось мнение, что истинные карбонилы образуют лишь некоторые элементы (никель, железо, кобальт, рений, хром, молибден, вольфрам, часть платиновых металлов). При этом предполагалось наличие у карбонилов так называемых типич1ных карбонильных овойств. К их числу относили высокую летучесть, растворимость в индиферентных органичеоких растворителях, термическую диссоциацию на металл и окись углерода, комплексное строение. Ряд исследователей считает, что летучие карбонилы могут образовывать только элементы с 5-валентными электронами. Но карбонил углерода обладает всеми типичными карбонильными свойствами. Он летуч, разлагается на углерод и окись углерода, растворяется только в органических растворителях, имеет координационные связи (комплексное строение), и в то же время его центральный атом обладает -5- и р- валентными электронами. [c.12]

    В темноте пятикарбонил железа вяло реагирует с пиридином. Избыток пиридина медленно вытесняет из карбонила железа окись углерода. Раствор становится темно-красным (при 25° за 60 час.). При 80° и молярном соотношении пиридина к пятикар-бонилу железа, равном 5 1 за 10 час., освобождается около 2 молей окиси углерода, а за 118 час. несколько больше. Реакция идет вправо только при непрерывном удалении окиси углерода  [c.110]

    Это можно иллюстрировать на реакции метанола с дикобальтоктакар-бонилом при комнатной температуре. При добавлении карбонила к метанолу сначала появдяется густая, почти черная окраска раствора, затем раствор становится ярко-красным и выделяется окись углерода согласно стехиометрическому уравнению [c.291]

    Удалять СО2 можно по-разному щелочной промывкой, абсорбцией в воде под давлением или в растворах органических оснований. Окись углерода удалять сложнее — ее абсорбируют аммиачными растворами полухлористой меди (1 вес. ч. СиС1з, 1,25 вес. ч. ЫН4С1, 3,7 вес. ч. НзО и 0,3 вес. ч. водного раствора ЙНд). [c.214]

    Оксид углерода(П). Оксид углерода(Н), или окись уг.геро. СО — бес[1,ветный, ядовитый газ, конденсирующийся в жидкостк только при —192 °С и затвердевающий при —205 "С. В воде окси углерода растворим очень мало и не вступает с ней в химическое взаимодепствне. [c.442]

    Реактив для определения окиси углерода работает одинаково хо-])ошо прн всех температурах, но при указанной концентрации годится для связывания не больше О см окиси углерода. Соединение окиси углерода с пол тслористой медью очень непрочно при эва-ку1грованип, даже при встряхивании с индифферентными газами, час1ъ СО выделяется обратно. Поэтому удобнее пользоваться двумя пипетками, из которых первая служит для предварительного поглощения. вторая для окончательного. Далее надо заметить, что аммиачный раствор полухлористой меди поглощает ацетиленовые углеводороды и отчасти даже этилен, не говоря уже о кислороде. Поэтому, прежде чем определять окись углерода, необходимо элиминировать из газовой смеси эти компоненты. [c.384]

    В последнее время рекомендуется определять водОрод в газах иокрым путем 1В обьтновенных пипетках. Для этого приготовляется раствор 5% хлористого палладия в воде. Для лучшего растворения полезно прибавить к воде хлористого натрия. Такой раствор поглощает водород исключительно" (если удалена окись углерода). При этом хлористый палладий восстанавливается до металла. Отработанный реактив регенерируется растворением металлического осевшего палладия в царской водке.  [c.385]

    Аммиак Ацетилен Влага СОг нЭ Влага СаО NaOH плавленный 10% раствор СгОз в разб. (1 1) HzSOi КОН плавленный Окись углерода СОг Fe( 0)5 N1 (СО), Натронная известь или аскарит Активная медь прн 180—200° С [c.616]

    На рис. 8.11 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой BASF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода. Синтез осуществляется при 250 С и 70— 75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 сиова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подается в колонну 5, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание. [c.271]

    Продукты С токсическими свойствами а) сильнодействующие ядовитые вещества (СДЯВ) аммиак жидкий и газообразный, аммиачная вода (25%-ная), нит-трил акриловой кислоты, окись углерода, сероводород, сероуглерод, тетраэтилсвинец, хлор жидкий и газообразный, хлорметан, дихлорэтан, синильная кислота, нитро-и аминосоеди нения ароматического ряда б) дымящие кислоты олеум, серная кислота конц., соляная кислота конц., азотная кислота конц., плавиковая кислота в) прочие продукты с токсическими свойствами ацетальдегид, бензол, метиловый спирт, окись этилена, хлорбензол, фенол, крезол, толуол, пятисернистый фосфор, окись цинка, диэтиламин, диэтилбензол, пиридин, сульфонол,этилбензол, этилтри-хлорсилан, щелочные растворы концентрацией более 10% [c.542]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    В дальнейшем, сохраняя ту же методику, стали применять более компактно и удачно устроенные приборы тина Орса, в которых бюретка и несколько пипеток с растворами соединены между собой. Для сожжения стали применять трубку с окисью меди СиО. При нагреве этой трубки до 270—300° С сгорали водород и окись углерода, а при 700° С сгорали метан и другие углеводороды. Добавления кислорода в этом случае не требовалось — окисление происходило за счет кислорода окиси меди. Таким путем К. В. Харичков в 1902 г. исследовал состав некоторых бакинских газов и установил, что они состоят главным образом из углеводородов, а также содержат некоторое количество углекислоты и азота. [c.222]

    Метионовая кислота получается в небольших количествах при помощи ряда реакций, ведущихся с применением серного ангидрида или дымящей серной кислоты. Она выделена из реакционной смеси, полученной сульфированием этилового эфира [432] диэтилсульфата [433], ацетонитрила, ацетамида, сульфоуксусной [434], уксусной [435] и молочной кислот [436]. Ацетилен легко растворяется в 50%-ной дымящей серной кислоте [437], образуя в качестве основного продукта формилметионовую кислоту, небольшая часть которой разлагается на окись углерода и метионовую кислоту  [c.175]

    К 0,1 М раствору Со2(СО)д в бензоле добавляют при комнатной температуре и перемешивании требуемое количество МоС1 в виде 0,1 М суспензии в гептане. При этом выделяется окись углерода и сразу же образуется черный осадок, который и представляет собой катализатор. В течение следующих 30 мин катализатор выдерживают при 50°С, после чего используют без предварительного фильтрования. Присутствие кислорода в катализаторе недопустимо, но незначительное [c.130]

    Катализатор этого процесса также гомогенный, и основу его составляет пентакарбонил железа /11, 32/. Катализатор получают взаимод ствием бутилпирролидина, воды и пентакар-бонила железа при 100°С. Пропилен и окись углерода реагируют в водном растворе при 100 С и давлении 15 атм. По имеющимся данньп , выход я-бутанола составляет 80-85% и изобутанола - 15-20%. [c.324]

    Если же, однако, нужно подвергать химической переработке ценные индивидуальные компоненты смеси углеводородных газов, то внимание в первую очередь привлекает фракция С2, главным образом этилен. В этом случае абсорбцию маслом нод давлением проводят таким образом, чтобы углеводороды С2 растворялись в масле и чтобы из абсорбера выходили газы, содерзкащне только водород, метан и инертные, неорганические примеси, такие, как азот, окись углерода и др. эти газы можно передавать затем в топливную сеть. В настоящее время масляные абсорберы работают настолько хорошо, что отходящий и абсорбированный газы можно разделять очень тщательно и с хорошими выходами. Если при помощи масляной абсорбции удалось разделить газы на две группы, то дальше перерабатывать углеводороды, растворившиеся в масле, можно двумя способами. [c.167]

    Карбонил кобальта мо/Кпо также разрушить встряхиванием с 20%-ной серной кислотой, однако этот способ вследствие ет О сложности применяется только в особых случаях. Небольшие количества карбонила кобальта быстро превраш,аются в йодистый кобальт и окись углерода при обработке водным раствором смесп 1юда и йодистого калия или раствором йода в пириднне. [c.544]

    В присутствии растворов дикобальтоктакарбокила к ненасыщенным органическим соединениям присоединяется либо только водород, либо одновременно водород и окись углерода из газовой фазы [23, 24]. Таким образом, во время оксореакции под влиянием растворов дикобальтоктакарбонила, которые предполагаются гомогенными, активируется как водород, так и окись угл( рода. [c.205]

    Окись углерода поглощают аммиачным раствором хлористой закисной меди при этом образуется продукт присоединения  [c.447]


Смотреть страницы где упоминается термин Окись углерода растворами: [c.161]    [c.508]    [c.78]    [c.312]    [c.219]    [c.332]    [c.113]    [c.407]    [c.110]    [c.88]    [c.561]    [c.117]   
Очистка технологических газов (1977) -- [ c.346 ]

Технология связанного азота Издание 2 (1974) -- [ c.239 ]

Очистка технических газов (1969) -- [ c.272 , c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы углерода



© 2025 chem21.info Реклама на сайте