Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерения в вольтамперометрии

    Введение быстрой развертки потенциала с регистрацией полярограммы на каждой отдельной ртутной капле создает новые условия протекания электродных процессов и аналитические возможности. Это выделяет такие измерения в самостоятельный раздел полярографического метода, называемый вольтамперометрия с линейной разверткой потенциала или со стационарным электродом. Последнее название подчеркивает, что теория приложима к описанию твердых, в том числе и стационарных электродов, и в измерениях ими можно заменять ртутный капающий электрод. [c.287]


    Аппаратура. Электролитическая ячейка (электролизер), используемая в вольтамперометрии, представляет собой сосуд вместимостью 1—50 мл с погруженными в него рабочим электродом и электродом сравнения. Электролитическим сосудом может быть обычный химический стакан или сосуд специальной конструкции (рис. 2.21), если он предназначен для работы без контакта с атмосферой. Систему электродов для вольтамперометрических измерений выбирают таким образом, чтобы плотность тока на этих электродах существенно различалась на рабочем электроде плотность тока должна быть велика, на электроде сравнения — ничтожно мала. В этом случае поляризоваться будет только рабочий электрод и, естественно, только на нем возможны электрохимические процессы восстановления или окисления ионов из раствора. Рабочий электрод, как правило, имеет очень малую поверхность по сравнению с поверхностью электрода сравнения — это микроэлектрод, который может быть изготовлен из твердого материала (Р1, Ag, Аи, графит специальной обработки и др.) или в виде ртутной капли, вытекающей из капилляра. [c.145]

    Одним из наиболее широко используемых и информативных методов изучения границы раздела платиновых металлов с растворами электролитов является метод потенциодинамических кривых. Он состоит в наложении на электрод линейно изменяющегося во времени потенциала и измерении возникающего в цепи тока. В полярографической практике этот метод обычно называют методом линейной вольтамперометрии. [c.197]

    Основная область применения инверсионной вольтамперометрии — анализ следовых количеств веществ. Чувствительность метода 10 — Ю - моль-л . Применение метода ограничивается в основном недостатками техники измерения и необходимостью применения особо чистых реактивов. Очистка веществ часто является длительным и трудоемким процессом. [c.135]

    В соответствии с областями электрохимических измерений электрохимические методы анализа делятся па пять групп потенциометрические (или потенциометрия), вольтамперометрические (или вольтамперометрия), кулонометрические (или кулонометрия), кон- [c.4]

    Вольтамперометрия. Термин вольтамперометрия появился в электрохимических измерениях в 40-х годах XX в. Он объединяет методы исследования зависимости тока поляризации от напряжения поляризации, накладываемого на исследуемую электрохимическую ячейку, когда рабочий электрод имеет потенциал, значительно отличающийся от его равновесного значения. [c.5]


    В электрохимических ячейках, используемых для точных измерений, всегда присутствуют три электрода (иногда четыре) индикаторный или рабочий электрод, электрод сравнения и вспомогательный электрод (противоэлектрод). Функционирование индикаторного электрода связано с его чувствительностью к частицам, которые присоединяют или отдают электроны либо служат источниками ионов, проявляющих подвижность в материале, из которого состоит чувствительный элемент электрода. Если в исследуемом растворе под действием протекающего через ячейку тока происходят значительные изменения состава, то тогда индикаторный электрод называют рабочим. При этом не имеет особого значения, происходит ли изменение состава раствора в его глубине или в объеме электрода (если, например, он жидкий). Так, ртутный электрод в вольтамперометрии является индикаторным электродом, тогда как в кулонометрии его следует рассматривать как рабочий электрод, поскольку при электролизе происходит существенное изменение состава раствора. [c.74]

    Очевидно, что состояние поверхности твердых стационарных электродов имеет значение не только при прямом или косвенном определении какого-либо иона или соединения в растворе, но и при изготовлении на их основе химических сенсоров со специфическим откликом. С обновлением поверхности электродов непосредственно связана воспроизводимость их показаний и стабильность работы во времени. История развития вольтамперометрии в последние 10-15 лет - это, прежде всего, история создания новых или усовершенствования уже известных электродов на основе металлов, композитов, паст, полимеров, углеродных материалов с целью получения стабильных и воспроизводимых результатов измерений. Литература по данному вопросу достаточно обширна и содержит самые различные сведения о способах обновления поверхности электродов. В последнее время обозначились новые тенденции в этой области, навеянные успехами в микроэлектронике и микропроцессорной технике. [c.91]

    В общем неравновесные методы электрохимического анализа основываются на процессах электролиза определяемых ионов. Измерения проводят в специфических для каждого метода условиях с применением соответствующих индикаторных электродов. Хронологически рассмотрение неравновесных методов электрохимического анализа и их аналитических возможностей следовало бы начать с хронопотенциометрии. Однако последнюю можно рассматривать как разновидность вольтамперометрии, широкое применение которой в аналитической практике делает ее в настоящее время самым важным из методов электрохимического анализа. [c.262]

    Другим фактором, который может существенно снижать основные метрологические характеристики вольтамперометрии, является влияние омического сопротивления раствора. При относительно больших плотностях протекающего через раствор тока, имеющих место при сравнительно высоких концентрациях определяемых веществ или высоких скоростях изменения потенциала индикаторного электрода, а также при достаточно большом сопротивлении раствора падение напряжения в межэлектродном пространстве становится соизмеримым с потенциалом электрода, который оказывается меньше напряжения, измеряемого во внешней цепи, на непостоянную, зависящую от тока величину. Влияние омического падения напряжения помимо нарушения правильности измерения электродного потенциала, в частности, потенциала полуволны, приводит к размыванию информационных волн и пиков вольтамперограмм, уменьшению их величины, а также затрудняет аппаратурное разделение фарадеевского и емкостного токов. [c.266]

    Вольтамперометрические методы в принципе могут быть реализованы либо при контролируемом изменении потенциала индикаторного электрода и измерении тока (потенциостатический режим), либо наоборот - при заданном изменении тока с измерением потенциала электрода (гальваностатический режим). Современные методы вольтамперометрии в своем большинстве используют потенциостатический режим измерения, [c.268]

    Систематизацию и классификацию существующих вольтамперометрических методов проводят с использованием разных признаков общности и различия. Как уже отмечалось, в вольтамперометрии в качестве электрического воздействия может использоваться либо заданный потенциал индикаторного электрода, изменяющийся во времени по некоторому закону E t), либо заданный ток i t). В первом случае сигналом-откликом является ток, а во втором - электродный потенциал. В соответствии с этим аппаратурные методы вольтамперометрии могут быть либо с контролируемым потенциалом - потенциостатические методы, либо с контролируемым током - гальваностатические методы. Однако электрические свойства электрохимической ячейки таковы, что в большинстве случаев потенциостатический режим измерения обеспечивает более простой в обработке и интерпретации сигнал-отклик и, следовательно, лучшие метрологические и эксплуатационные характеристики. В связи с этим в дальнейшем будут рассмотрены в основном потенциостатические методы. [c.314]


    Переменнотоковая вольтамперометрия на стационарных электродах иногда используется при достаточно больших скоростях линейной или треугольно-линейной развертки (0,05...0,5 В/с) и при частотах в несколько сотен герц. Это дает возможность, во-первых, устранить или ослабить отмеченные выше осложнения и, во-вторых, сократить время измерения. Кроме того, треугольно-линейная развертка позволяет наблюдать прямую и обратную стадии окислительно-восстановительного процесса и делает метод весьма полезным при исследовании электродных реакций. [c.371]

    Для измерения потенциалов пиков (или в вольтамперометрии применяют различные методы. Потенциал полуволны легко установить, проведя линию, параллельную остаточному току и площадке диффузионного тока и проходящую точно посередине между ними (рис. 8.1). Альтернативный путь нахождения Eia следует из уравнения обратимой катодной полярографической волны Гейровского-Ильковича, приведенного в гл. 9. Величина Еу2 отвечает точке пересечения зависимости - 0] Е с нулевой линией (рис. 12.2). Из наклона этого графика (0,059/л В) можно найти и число электронов, участвующих в электрохимической реакции. При этом следует иметь в виду, что указанное уравнение справед-442 [c.442]

    Потенциалы, соответствующие точкам на вольтамперограммах, имеющих форму пиков, находят методом графической интерполяции или расчетным путем. Первый метод основан на точном измерении потенциалов начала и конца развертки, а второй - времени развертки до момента регистрации интересующей точки на вольтамперограмме. С появлением приборов, оснащенных персональными компьютерами и цифровыми вольтметрами, появилась возможность измерения потенциалов поляризации в любой точке вольтамперометрической кривой и в любой момент времени. Однако в вольтамперометрии, как правило, не применяются устройства для компенсации омического падения напряжения, которые используются в прецизионных электрохимических исследованиях, например, капилляр Луггина. Поэтому значения потенциала рабочего электрода обычно содержат систематическую погрешность. Тем не менее воспроизводимость потенциалов пиков, полученных с использованием современных приборов, удовлетворительна даже для растворов с большим омическим сопротивлением. [c.443]

    Метод вольтамперометрии широко применяется для анализа различных органических соединений [18]. Разработаны вольтамперометрические комплексы, имеющие в своем составе плату сопряжения, устанавливаемую на системную шину 1ВМ, совместимой с ПЭВМ, подключаемую к потенциостату, и программное обеспечение. Программа задает условия электрохимического измерения (длительность, значения потенциала для всех стадий анализа, число точек на кривой, число накоплений в точках, число циклов и т.д.) обрабатывает полученные данные (проводит фоновую линию, расчет их параметров пиков - потенциала, высоты, площадей под пиками, значение полуширины и ее составляющих и др.) отображает графическую информацию в одном или одновременно в разных масштабах выводит графики вольтамперограмм и табличных результатов обработки на печатающее устройство и на внешнее запоминающее устройство (дискету) проводит количественную оценку результатов измерений. Создана единая информационная система вольтамперометрических методик [19]. [c.309]

    Нередки случаи, когда специфика исследований требует разработки специальных электродов сравнения [836, 5, 163, 1085, 688]. В целом единый сравнительный электрод для неводных растворов на основе органических растворителей не разработан. Наибольшее число измерений в неводной вольтамперометрии проведено с водным насыщенным каломельным электродом (нкэ). [c.72]

    Хронопотенциометрия формально обратна вольтамперометрии при заданном напряжении. Она заключается в наложении на рабочий электрод контролирующего тока и измерении потенциала во времени. [c.76]

    Кислород. Электровосстановление кислорода в органических растворителях изучено подробно методами полярографии, циклической вольтамперометрии, электролиза при контролируемом потенциале, хронопотенциометрии, нередко с привлечением неэлектрохимических измерений на различных катодах в присутствии разнообразных фонов в многочисленных средах [925, 1022, 153, 963, 1052, 906, 1000, 984, 591, 991, 1034, 1122, 967, 868, 1146, 1248, 1018, 958, 663, 1019]. [c.103]

    Методика вьшолнения измерения содержания цинка в водных растворах методом инверсионной вольтамперометрии / Свид. о метрологической аттестации 2420/473-95/0611 от 02.08. 1995 г. СПб, 1995. [c.825]

    Эти возможности за счет иного, чем в классической полярографии способа развертки потенциала и иного способа измерения тока, реализуются в осциллографической полярографии и инверсионной вольтамперометрии (увеличение 1р), импульсной и квадратно-волновой переменнотоковой полярографии (уменьшение / ) и синусоидальной переменнотоковой полярографии (разделение 1р и (.)  [c.171]

    Интервал определяемых концентраций 10 —10 М, нижний предел определений в методе с, линейной разверткой напряжения и в переменнотоковой полярографии достигает 10 и в инверсионной вольтамперометрии—10 М, при определении малых концентраций погрешность не превышает 3%. Метод достаточно селективен разрешающая способность по потенциалам (полярографические волны не сливаются) в классической полярографии 100—150 мВ, в переменнотоковой и в полярографии с линейной разверткой напряжения — 30—50 мВ. Разрешающая способность может быть увеличена, если регистрировать кривую AIlAE = f E). При этом на полярограмме при E = Ei/ наблюдается максимум, высота которого пропорциональна концентрации. Дополнительного разделения полярографических волн можно достичь, используя в качестве фонового электролита комплексо-образующий реагент. Например, раздельное определение ионов Со2+ и N 2+ в смеси на фоне 1 М раствора КС1 затруднительно Ei/ =—1,2 и —1,1 В соответственно), тогда как на фоне 1 М раствора KS N эти значения изменяются до —1,3 и —0,7 В. Метод быстр в исполнении единичные измерения занимают несколько минут и могут быть повторены для одного и того же раствора многократно (практически истощение деполяризатора в растворе не происходит). Ограничения метода полярографического анализа связаны с использованием ртутного электрода. [c.144]

    При выборе такой величины напряжения, которая отвечала бы потенциалу микроэлектрода в области так называемого предельного диффузионного тока, имеем дело с прямой вольтамперометрией. Если же подобные измерения выполнить при изменеиин активности (концентрации) деполяризатора за счет химической реакции, протекающей одновременно в ячейке, метод можно отнести к амперометрическому титрованию. [c.101]

    Кондуктометрия — это метод электрохимической индикации, в котором для нахождения точки эквивалентности используют шзменение электропроводности в ходе титрования. Поэтому говорят также о титровании по электропроводности. i В отличие от электрохимических величин, используемых в лругих методах индикации, таких, как потенциометрия, амие-рометрия, вольтамперометрия, суммарная электропроводность электролита аддитивно складывается из электропроводности всех находящихся в растворе ионов независимо от того, принимают они участие в реакции или нет. Поэтому кондуктомет-рические измерения отражают не конкретные процессы, происходящие при титровании, а изменения, происходящие в растворе в ходе титрования и связанные с вкладом ионов, участвующих в реакции, в суммарную электропроводность всех ионов, находящихся в растворе. При титровании по электропроводности точность определения тем меньще, чем больше в растворе концентрация посторонних ионов, не участвующих в реакции. Ияаче говоря, наиболее удовлетворительные результаты получаются при титровании растворов с минимальным содержани-<ем посторонних электролитов. [c.318]

    Вольтамперометрия с быстрой (линейном) разверткой потенциала. В этом методе в отличие от классической полярографии скорость изменения потенциала составляет 50—100 мВ/с, и запись вольтам-перной кривой продолжается около 1 мин равновесное состояние на электроде не достигается, для теоретического описания процесса нельзя использовать уравнение Нернста. В этом методе время развертки синхронизировано с периодом капания, т. е. развертка должна начинаться в определенный и точно известный момент после начала роста капли, которая не должна падать до того, как закончится развертка. За время развертки рост ртутной капли должен быть ничтожно малым. Скорость изменения площади поверхности капли минимальна в конце жизни капли, поэтому развертку начинают в поздний период жизни капли, например через 2—3 с после начала ее роста. Для измерения тока применяют либо осциллограф, либо другое устройство, позволяющее фиксировать быстрое изменение тока. [c.500]

    В анодной области аналогичные опыты проводились с платиновыми микроэлектродами в метанольных растворах Na 104. И эти результаты были неудовлетворительными. Наблюдались очень большие токи при добавке некоторых реакциоиноспособных соединений нельзя было получить нормальных вольтамперометрических кривых. Несколько более удовлетворительные данные найдены при анодном окислении на большом платиновом электроде с использованием потенциостата [3]. На кривых ток - напряжение наблюдались фоновые токи даже вблизи 0,0 В относительно электрода Ag/AgNOs, которые на один или два порядка превосходили соответствующие величины для ацетонитрила, измеренные в тех же условиях. С ростом потенциала ток закономерно увеличивается. Очевидно, это явление может объяснить неудовлетворительное поведение растворителя при циклической вольтамперометрии. [c.38]

    Простои и достаточно унипереальный метод количеств. М. а.— титриметрия (погрешности измерения объема титранта до 10 3 мл) Конечную точку титрования устанав ливают обычно электрохим. или фотометрич. методами, В элементном микроанализе орг. в-в используют гравиметрию (погрешность в.звешивания до 10 г). Широкое распространение в М. а. получили фотометрия, кулонометрия, потенциометрия, вольтамперометрия, кинетич. методы. [c.342]

    В количественном М. а. используют те же методы, что и для макрохкм. анализа, напр, простой и достаточно универсальный метод-титриметрия (погрешность измерения объема титранта до 1-10 мл). Конечную точку титрования обычно устанавливают электрохим. или фотометрич. методом. В элементном микроанализе орг. в-в, к-рый имеет особенно большое значение, широко используют грави-метршо (погрешность взвешивания до г). Распространение в М. а. получили фотометрия, кулонометрия, потенциометрия, вольтамперометрия, кинетич. методы. [c.85]

    Термин уоЬоттагу, введенш.ш в упомянутом значении в английский язьпс, на русский язьпс обычно переводится как вольтамперометрия. В таком значении этот термин не отражает своей электрохимической специфики, поскольку вообще вольтамперометрия, т.е. измерение вольт-амперных зависимостей, весьма широко применяется в электротехнике, электронике и других областях науки. Поэтому термин вольтамметрия представляется более точным и специфичным, а также более кратким. Тем не менее, поскольку в отечественной литературе используется термин вольтамперометрия, мы будем придерживаться этого термина. [c.262]

    Во всех рассмотренных видах аппаратурных методов основной частью измеряемого сигнала являются нестационарные значения тока (или потенциала), т.е. измеряются по существу динамические характеристики ячейки i E, t) или (/, t). В связи с этим такие сравнительно редко используемые в аналитической практике методы, как хроноамперометрия (зависимость i(t) от единичного скачка ), хронопотенциометрия (зависимость E f) при скачке /) и амперометрия (измерение / при Е = onst), следует считать разновидностями вольтамперометрии, отнеся их соответственно к пятой, шестой и седьмой группам аппаратурных методов. [c.321]

    Ступенчато-лниейная развертка. Мелкоступенчатая развертка по существу является дискретной разновидностью линейной развертки, при которой потенциал E t) изменяется не непрерывно, а дискретно, через равные отрезки времени 5/ малыми одинаковыми скачками 8Е. Например, если 8Е = 5 мВ, а амплитуда развертки 1 В, то последняя состоит из двухсот дискретных ступеней, настолько малых, что они почти незаметны при просмотре (например, на экране осциллографа или дисплея) квазилинейной зависимости E t). При этом общая скорость развертки v = 6E/6t. Измерение тока осуществляется тоже дискретно - в конце каждой ступени, когда емкостный ток минимален. Выборка-хранение значений тока (аналогично тому, как это делается в импульсных вариантах вольтамперометрии) производится в течение малого времени /в бл Этот способ измерения дает существенное уменьшение емкостной помехи по сравнению с режимом линейной развертки и, следовательно, позволяет использовать большие скорости развертки V при одном и том же отношении фарадеевский сигнал/емкостная помеха или повышать это отношение при равных v. [c.386]

    В отличие от рассмотренных выше разновидностей вольтамперометрии, предусматривающих потенциостатический режим, в условиях хронопотенциометрии измерения осуществляются в галь-ваностатическом режиме, т.е. при контролируемом токе, изменяющемся в начальный момент t = 0) скачком от нуля до некоторого постоянного значения i-ц. Интерпретация временной зависимости потенциала индикаторного электрода E t) позволяет судить о концентрации определяемых веществ, характере электродного процесса и связанных с ним химических реакциях. При этом, как обычно, используется трехэлектродная ячейка, а потенциал E t) измеряется относительно электрода сравнения. [c.389]

    Применение указанных разновидностей вольтамперометрии позволяет в ряде случаев снизить определяемую концентрацию вещества (например, в методах с линейной разверткой потенциала удается определять вещества с концентрацией до 1 мкмоль/дм , в то время как в обычной полярографии она при-JVlepнo равна 10 —10 ммоль/дм ). Трудности в практической работе связаны здесь с использованием специальной быстродействующей регистрирующей аппаратуры, а также с измерением параметров вольтамперограмм (наклонная линия отсчета) и использованием их для количественных расчетов, так какобыч- [c.25]

    Электрохимические методы анализа. Ряд титриметриче-ских методов анализа с электрохимическим определением точки эквивалентности описан в предыдущем разделе. Кроме этого существует большая группа методов, в которых аналитический сигнал обеспечивается протеканием электрохимического процесса кулонометрия - измерение количества электричества, по тенциометрия - измерение равновесных разностей потенциалов, вольтамперометрия - измерение силы тока в зависимости от потенциала электрода. [c.456]

    Для определения брома в газах пользуются колориметрией, инверсионной вольтамперометрией, измерением флуоресценции в видимой области и другими методами. Сравнительные данные о точности и воспроизводимости методов инверсионной вольтампе-рометрии и нейтронно-активационного анализа имеются в работе [435]. Краткая характеристика методов, использованных для определения брома в газовых смесях, приведена в табл. 13. [c.169]

    Непосредственно связан с прямой вольтамперометрией метод амперометрического титрования. Он основан на измерении величины диффузионного тока, который проходит через электролитическую ячейку, состоящую из поляризующегося индикаторного электрода (ртутный капельный или вращающийся твердый электрод) и электрода сравнения (каломельного, хлорид-серебряного) (при постоянном значении потенциала). Величину потенциала с целью повыщения чувствительности метода выбирают таким образом, чтобы титрование проводилось при предельных токах восстановления или окисления веществ. Для фиксирования точки эквивалентности в методе амперометрического титрования используют появление или исчезновение диффузионного тока на поляризующемся электроде. В основе метода лежит пропорциональность между величиной диффузионного тока и концентрацией вещества, участвующего в электрохимическом процессе на элеетроде и обусловливающего наблюдаемый диффузионный ток. Для применения метода амперометрического титрования к какой-либо реакции, используемой для объемных определений, необходимо, чтобы одно из реагирующих веществ восстанавливалось или окислялось на индикаторном электроде и потенциал должен бьггь таким, чтобы величина диффузионного тока бьша бы пропорциональна концентрации [c.764]

    Полярофафия (вольтамперометрия) — электрохимический метод анализа, основанный на измерении силы тока, возникающего при электролизе раствора анализируемого вещества на микроэлектроде. [c.237]


Смотреть страницы где упоминается термин Измерения в вольтамперометрии: [c.286]    [c.12]    [c.372]    [c.372]    [c.197]    [c.372]    [c.292]    [c.553]    [c.399]    [c.93]    [c.186]   
Смотреть главы в:

Основы современного электрохимического анализа -> Измерения в вольтамперометрии




ПОИСК





Смотрите так же термины и статьи:

Вольтамперометрия

Вспомогательные измерения в вольтамперометрии переменного тока



© 2024 chem21.info Реклама на сайте