Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Р а з д е л ГГ. НЕОРГАНИЧЕСКАЯ ХИМИЯ Простые вещества

    Необходимо, однако, отметить, что некоторые простые углеродсодержащие вещества (угольный ангидрид, угольная кислота и ее соли, окись углерода и т. п.) настолько близки по свойствам к минеральным соединениям, что их обычно относят к неорганической химии. Это указывает на тесную связь органической химии с химией неорганических соединений. [c.13]


    Ограниченный характер и границы применимости стехиометрических законов химии. Современная формулировка стехиометрических законов. При образовании подавляющего большинства неорганических соединений их состав может быть переменным в пределах области гомогенности. Постоянный и неизменный химический состав наблюдается только для молекул (например, N1 3, 502 и т. п.), а также кристаллов с молекулярной структурой. А последних среди твердых неорганических веществ очень мало, и они представляют исключения (менее 5%)- Таким образом, молекулы являются одной из форм существования химических соединений, но не единственной. Для типичных твердых неорганических простых веществ и соединений характерна немолекулярная форма существования вещества. [c.24]

    Первый том содержит сведения о строении вещества, физико-химических свойствах простых веществ и важнейших неорганических и органических соединений, таблицы линий для спектрального и рентгеноспектрального анализа, а также единицы измерений, физические константы и математические таблицы. Приведены краткие сведения о периодических изданиях и справочной литературе (русской и иностранной) по химии. [c.484]

    Мы надеемся, что настоящая книга в какой-то степени будет способствовать популяризации и более широкому использованию в аналитической и неорганической химии простого и удобного метода разделения и концентрирования микроколичеств веществ. [c.4]

    Обычно из числа соединений углерода к органическим веществам причисляют те, которые по своему составу, строению и свойствам являются жизненно важными углеродсодержащими соединениями. Это справедливо для большинства соединений углерода. Однако существует значительное число углеродсодержащих соединений, которые построены совсем иначе и имеют другой состав по сравнению с упомянутыми выше веществами, от которых они поэтому существенно отличаются своими свойствами. Примером могут служить карбиды металлов. Такие соединения углерода относят к неорганическим соединениям. Следовательно, понятия соединения углерода и органические соединения не совпадают. Элементарный углерод относится также к области неорганической химии. Простейшие соединения углерода и прежде всего его окись и отвечающая ей кислота, как и простейшие углеводороды, можно отнести как к неорганическим, так и к органическим соединениям. [c.15]


    Многочисленные химические соединения, в том числе и простые вещества (т. е. соединения ато.мов одного элемента), являются основным объектом изучения химии. Химия изучает состав соединений, их строение, свойства, разрабатывает методы их получения, использования и анализа. Примечательно, что молекулы подавляющего большинства известных химических соединений содержат в своем составе атомы углерода. Соединений, не содержащих углерода, известно лишь немногим более трехсот тысяч. В связи с исключительной многочисленностью соединений углерода, важной их ролью в природе и технике и совершенно отличающимися от других соединений свойствами химия соединений углерода выделена в самостоятельную область, называе.мую органической хи-М1 ей. Химия соединений всех остальных элементов, а также учение О взаимосвязи между химическими элементами, является областью неорганической химии. Состав и строение химических соединений и общие закономерности течения химических процессов составляют предмет общей химии. Очевидно, что эти общие представления о строении вещества и о закономерностях химических процессов одинаково важны для всех специальных областей химии. [c.6]

    При составлении уравнений окислительно-восстановительных реакций, протекающих с участием органических веществ, в простейших случаях можно применить степень окисления. Так, приведем уравнение реакций, в которых коэффициенты могут быть определены по тому же правилу, что и для окислительно-восстановительных реакций в неорганической химии  [c.169]

    Реакции обнаружения молекул. Методы обнаружения неорганических и органических веществ различаются, поскольку в первом случае почти всегда используют ионные реакции, во втором — в основном молекулярные. Реакции между ионами протекают в большинстве случаев быстро и однозначно, реакции между молекулами часто идут медленно, не полностью и сопровождаются побочными реакциями (ср. стр. 46). Это обстоятельство, а также очень большое число соединений, с которыми имеют дело в органической химии, нередко мало отличающихся по свойствам (гомологические ряды), делают обнаружение и исследование органических веществ несравненно более трудной аналитической задачей, чем неорганических соединений. Задача качественного органического анализа чаще всего заключается в установлении идентичности неизвестного вещества с уже известным соединением или в выяснении природы нового неизвестного соединения. Несмотря на то что в случае органических веществ иногда и имеют дело с ионами, последние, за малыми исключениями, обладают сложной структурой, и поэтому такие простые ионные реакции, как в неорганическом анализе, для них становятся едва ли возможными. [c.56]

    Растворы — это гомогенные (однофазные) химические системы переменного состава, образованные двумя или несколькими веществами. Жидкие растворы (в дальнейшем будем называть просто растворы ) состоят из жидкого растворителя (в неорганической химии чаще всего из воды) и одного или нескольких растворенных веществ, которые до смешения с растворителем могли быть твердыми, жидкими или газообразными. Далее будем рассматривать растворы с одним растворенным веществом. [c.102]

    Теоретической основой неорганической химии — химии отдельных элементов и образуемых ими простых и сложных веществ — являются периодический закон Д. И. Менделеева, представления об электронном строении атомов и законы общей химии. Главная отличительная особенность данного учебника заключается в том, что металлохимия трактуется как неотъемлемая часть современной неорганической химии. Рассмотрение фактического материала металлохимии и его осмысление осуществлено на основе концепций общей химии и неорганической химии. Первые четыре главы учебника служат теоретическим введением в собственно неорганическую химию и ие дублируют материал общей химии. [c.3]

    Изучение свойств простых веществ имеет фундаментальное значение в неорганической химии. Оно является первым этапом в описательной химии элементов. Последовательное и аналитическое восприятие фактического материала о свойствах простых веществ (физических, физико-химических, химических) позволяет составить общее представление о химическом облике элемента, предвидеть природу химической связи, состав и свойства его характеристических соединений, их кислотно-основные и окислительно-восстановительные характеристики и т. п. Принципиальная особенность [c.25]

    Таким образом, современная химия — это не только химия микрочастиц (атомов, молекул, ионов, радикалов и т. п.), но и химия макротел. При этом органические макротела характеризуются молекулярной структурой, а большинство неорганических — не имеют молекулярной структуры. В последнем случае макротела состоят либо из атомов одного и того же химического элемента (простое вещество), либо из атомов разных элементов (химическое соединение). Признание немолекулярной формы существования твердого вещества приводит к необходимости пересмотра некоторых положений химической атомистики, модернизации основных законов и понятий, справедливых для пневматической (газовой) химии. [c.9]


    Примерами веществ с молекулярной решеткой в неорганической химии являются лед, твердый оксид углерода (IV) ( сухой лед ), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (Рг, С12, ВГг, Ь, Н2, О2, N2), трех-(Оз), четырех-(Р4), восьми- (5р)-атомными молекулами.Молекулярная кристаллическая решетка иода представлена на рис. 41. Большинство кристаллических органических соединений имеют молекулярную решетку. [c.106]

    Четные степени окисления для азота сравнительно мало характерны. Однако некоторые из них исключительно интересны и важны в неорганической химии и технологии. К числу таких соединений относится оксид азота (+2) (см. табл. 6). Молекула N0 содержит нечетное число электронов и по существу представляет собой обладающий малой активностью радикал. Молекула N0 достаточно устойчива и мало склонна к ассоциации. Только в жидком состоянии оксид азота (+2) незначительно ассоциирован, а его кристаллы состоят из слабо связанных димеров N2O2. Несмотря на эндотермичность и положительнуго величину энергии Гиббса образования NO из простых веществ, оксид азота (+2) не распадается на элементы и химически довольно инертен. Дело в том, что согласно ММО порядок связи в N0 высок и равен 2,5. Молекула N0 прочнее молекулы [c.257]

    Но ведь существует множество других пособий по химии для поступающих в ВУЗы Это действительно так, и Вы, безусловно, с пользой для себя можете ими воспользоваться, т. к. большинство из них обладают несомненными достоинствами. И все же мы берем на себя смелость рекомендовать Вам эту книгу, потому что многие известные пособия, с нашей точки зрения, являются излишне описательными, не имеющими четкой концепции в изложении учебного материала. В результате химия предстает копилкой огромного числа формул, уравнений, правил и фактов, запомнить которые не просто трудно, а очень трудно. Отличительной особенностью этой книги является стремление авторов максимально систематизировать, как бы разложить по полочкам весь фактический материал курса химии, особенно это относится к изложению свойств неорганических и органических веществ. [c.3]

    Простые вещества и химические соединения, которые встречаются в неживой природе, как, например, горные породы, минералы, руды, вода, воздух и металлы, были отнесены к области неорганической химии. [c.292]

    Один из важнейших элементов неорганической химии — кремний — в виде простого вещества имеет кристаллическую структуру типа алмаза (рис. 3). Атомы [c.13]

    Большинству хорошо известно, что все вокруг состоит из ограниченного числа химических элементов. Ученые, почти без исключения, чаще или реже нуждаются в той или иной информации о химических элемента) (простых веществах), и удивительно, что такого рода информацию бывает не так-то легко найти. Даже химикам иногда сложно отыскивать некоторые сведения об элементах. Химики имеют в своем распоряжении отличные подборки цифровых данных, но, поскольку авторы этих подборок видят мир через призму неорганической, органической, аналитической или физической химии, справочники составлены соответственно [c.6]

    Связь между неорганической и органической химией ярко проявляется при сопоставлении р.чда соединений азота и углерода. Особенно показательно сопоставление нитрида бора BN с углеродом С и боразола BзNзH5 с бензолом СеНв. Нитрид бора образуется из простых веществ при 900 °С в виде модификации, структура которой аналогична слоистой структуре графита. При 1350 °С и 6,2-10 Па образуется алмазоподобный боразон ВК, на основе которого изготовляют режущий инструмент, не уступающий алмазному. [c.124]

    При изучении неорганической химии, особенно качественного анализа, полезно знать примерную растворимость широко применяющихся веществ. Простые правила растворимости приведены ниже. Эти правила применимы к соединениям обычных катионов N3+, К+, Mg +, Са2+, 5г2+, Ва2+, А1 , Сгз+, Мп2+, Ре +, Ре +, Со2+, N 2+ Си2+ 2п +, [c.263]

    Вторая часть книги содержит разнообразный материал описательной химии. Основной упор здесь сделан на изложение неорганической химии, которое сопровождается последовательным выявлением периодических закономерностей в свойствах различных типов соединений. Более подробно, чем обычно, рассматривается химия простых анионов и катионов, а также оксианионов различных элементов и их кислородсодержащих кислот на современном уровне изложены основы химии координационных соединений, в том числе вопросы их строения, устойчивости и стереоизомерии. Сравнительно более лаконично подана органическая химия, хотя по существу затронуты все важнейшие стороны этой обширной области химии, включая механизмы органических реакций, химию полимеров и биохимию. В конце книги помещена не совсем обычная для учебных пособий глава, посвященная актуальной теме—связи химии с загрязнением окружающей среды. Во второй части книги постоянно применяются структурные представления, законы химического равновесия и подходы, использующие теоретические воззрения на природу кислотно-основных и окислительно-восстановительных процессов. Благодаря этому описательная химия превращается из несколько монотонного перечисления свойств веществ и наблюдаемых закономерностей их поведения в увлекательное объяснение научных, практических, а нередко и известных из повседневного опыта фактов на базе химических представлений. [c.5]

    Пособие предназначено для организации и проведения лабораторных занятий по общей химии, теоретическим основам неорганической химии и ее экспериментальным методам, а также по химии элементов Периодической системы Д.И. Менделеева. В пособие включены работы, посвященные классическим методам очистки и идентификации, а также методики простейших синтезов неорганических веществ. [c.2]

    Было сделано четыре попытки выработать общую систему наименований неорганических соединений. В 1940 г. Комиссия по номенклатуре неорганической химии Международного союза химиков опубликовала сборник правил по номенклатуре [1]. Послевоенный, пересмотренный вариант был издан в 1953 г. под названием Предварительные правила [2]. Результатом дальнейшей разработки этого варианта явился сборник Принятые правила [3], одобренный на Парижской конференции в 1957 г. В 1965 г. ШРАС опубликовал некоторые поправки [4]. Наконец, в 1971 г. ШРАС рекомендовал новый сборник — Принятые правила [5], в, который были включены пересмотренные и упорядоченные предыдущие варианты химической номенклатуры и добавления к ним, даны формулировки принципиальных положений и правил и приведены примеры названий широкого круга веществ. Данная глава построена на основе именно этого, последнего, варианта правил, который был недавно обобщен в работе [6]. Основное внимание здесь уделено использованию широко известной номенклатуры бинарных соединений с суффиксом -ид (-ide), даны рекомендации по использованию способов Штока и Эванса — Бассетта, а также по применению системы Вернера для построения названий не только комплексных, но и большей части простых неорганических соединений. [c.20]

    До конца первых десятилетий XIX в, существовало представление, что соединения, образующиеся в растениях и животных, обязаны своим происхождением действию особой так называемой жизненной силы и что грубые и простые неорганические силы , обусловливающие превращения неорганической материи, в живом организме не играют никакой роли. Согласно этому представлению органические вещества тем и отличаются от неорганических, что их образование зависит отэто особенной жизненной силы поэтому получение их искусственным образом, при помощи методов, применяемых в неорганической химии, считалось невозможным. [c.2]

    Основным элементом, входящим в состав органических соединений, является углерод. Поэтому А. М. Бутлеров определил органическую химию как химию соединений углерода. Однако существуют простые вещества, содержащие углерод (СО, СО2, соли синильной кислоты, СЗа), которые относят к неорганическим соединениям и изучают их в курсе общей или неорганической химии. Учитывая это, более точно органическую химию следует определять как химию углеводородов и их производных (К. Шорлем-мер). [c.5]

    Приведите примеры реакций из областей неорганической и органической химии, при которых а) из одного простого вещества образуется другое простое вещество б) из одного соединения образуется другое соединение в) из одного вещества образуется два или большее количество других веществ г) из нескольких веществ образуется одно соедгшение. [c.166]

    Большинство известных простых и сложных вешеств в обычных условиях представляют собой твердые тела. Одной из важнейших задач современной неорганической химии является исследование свойств твердых тел в зависимости от их состава и структуры. Классические методы химического исследования базировались главным образом на изучении жидких растворов. При растворении исследуемое твердое вещество теряет свою индивидуальность и поэтому весь фактический материал классической химии описывает свойства не самого вещества, а продуктов его взаимодействия с растворителем. Это привело к ошибочным представлениям о характере химического взаимодействия между компонентами в твердых телах. В частности, образование ионов при растворении солей в воде служило доказательством чисто ионного взаимодействия и в твердой фазе, хотя в настоящее время установлено различными методами, что в твердом Na l доля ионности не превышает 82%, а в таком предельно ионном соединении, как sF,—93%. Действительно, для осуществления чисто ионного взаимодействия в Na l необходимо, чтобы величина сродства к электрону для хлора была больше, чем величина первого ионизационного потенциала для натрия ( i>/i, Na). Фактически определенные величины составляют /i,Na = 490,7 кДж/моль, 01 = 357 кДж/моль, т. е. полный переход электрона от натрия к хлору осуществиться не может по энергетическим соображениям. [c.301]

    Широко используемый в неорганической химии метод валентных связей, несмотря на его наглядность и возможность объяснения на его базе образования из простых веществ многих молекул, например, состава РС15, 5Рв, ХеРа, Хер4, ХеРв, 1Рв, 1 ,, не согласуется с энергетическими данными в отношении этих молекул. Кроме того, этот метод не предполагает возможности образования экспериментально обнаруженного иона Не , а также не объясняет парамагнетизма молекулярного кислорода и др. [c.6]

    Большинство неорганических веществ является соединениями переменного состава, поскольку в качестве струк тур-ных единиц в них отсутствуют молекулы. Однако области гомогенности могут быть настолько малы, что обнаружить их не просто. Одним из признаков, характеризующих наличие протяженной области гомогенности, является изменение параметров элементарной ячейки. Отсутствие таких изменени(1 не свидетельствует, конечно, о постоянстве состава, но если изменения найдены, то заметная область гомогенности у соединения имеется. Это одна из областей неорганической химии и материаловедения, где остро стоит вопрос о необходимости прецизионного определения параметров. Эта. же проблема возникает при изучении фазовых диаграмм, так как образование твердых растворов той или иной концентрации является одним из наиболее распространенных типов химических взаимодействий. Термин твердые растворы не должен вводить в заблуждение - фактически речь идет об области гомогенности фазы более сложного состава структурные единицы, характерные, например, для растворяемого компонента, в твердом растворе не сохраняются. Параметры решетки характеризуют изменение состава сосуществующих фаз, что помогает понять природу протекающих в системе процессов. Так, изменение параметров в двухфазной области - указание либо на неравновесность, либо неквазибинарностъ системы. Менее строгим является обратное утверждение -постоянство параметров может бьп ь кажущимся, связан- [c.131]

    Структурные формулы дают гораздо более полное представление о рассматриваемых веществах, чем обычные, так как показывают не только число атомов каждого элемента в молекуле, но и как эти атомы друг с другом соединены. В связи с этим установление структурных формул нередко требует больших исследований. Такого рода исследованиями занимались и занимаются многие ученые, что объясняется впервые выявленной А. М. Бутлеровым громадной ролью структурных формул в химии, особенно — органической. Относительно простые фор-,мулы неорганической химии обычно не пищутся в явно выраженной структурной форме, но часто содержат ее в скрытом виде. Например, азотная кислота обозначается НЫОз (а не ЫНОз или ЫОзН), что указывает на центральное положение в ее молекуле атома азота.  [c.30]

    Следует отметить, что простейшие формулы в неорганической химии весьма распространены ими пользуются для обозначения многих веществ с более сложной в действительности структурой (пример PjOs) и для всех веществ, в строении которых отдельные молекулы обычно не выявляются (пример Na l), не говоря уже о веществах, для которых известен только химический состав. Простейшими формулами сражаются, как правило, и сами химические элементы (например, в уравнениях пишется S, а не Sg).  [c.33]

    Кристаллические решетки, состоящие из молекул полярных и неполярных), называются молекулярными. Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекуля[1-ными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число веществ с молекулярной решеткой в неорганической химии невелико. Примерами их являются лед, твердый оксид углерода (IV) ( сухой лед ), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (Ра, С1а, Вга, Ь, Нг, О2, М.,), трех- (О3), четырех- (Р4), восьми-(Зв) атомными молекулами. Молекулярная кристаллическая решетка иода представлена на рис. 1.22. Большинство кристаллических органических соединений имеют молекулярную решетку. [c.55]

    Связь между неорганической и органической химией ярко проявляется при сопоставлении ряда соединений азота и углерода. Особенно показательно сопоставление нитрида бора BN с углеродом С и боразола ВзКзН с бензолом СеН . Нитрид бора образуется из простых веществ при 900 °С в виде модификации, структура которой аналогична слоистой структуре графита. При 1350 °С и [c.124]

    Основной массив объектов неорганической химии составляют многокомпонентные соединения (с числом компонеитов 3 и более), которые можно назвать слол<ными. Если бинарные соединения являются продуктами взаимодействия простых веществ, то сложные, в свою очередь, можно рассматривать как продукты взаимодействия бинарных соединений. Руководящим принципом при изучении эпгх объектов, как и ранее, являются природа химической связи, химическое и кристаллохнмическое строение и как следствие этого — свойства соединений. [c.79]

    Один из важнейших элементов неорганической химии — кремний, который в виде простого вещества имеет кристаллическую решетку алмаза (рис. 3). Атомы кремния располагаются по вершинам и в центрах каждой грани в элементарной кубической ячейке. Тремя перпеидикуляриыми плоскостями, проходящими через центр ячейки, можно мысленно разбить элементарную кубическую ячейку на 8 малых кубов (октантов). Одни из восьми октантов на рис. 3 показан пунктиром. По каждому координатному направлению заселенные октанты, в центре которых находятся атомы кремния, чередуются с пустыми. Таким образом, из восьми октантов заселенными оказываются только четыре. При таком расположении каждый атом кремния окружен четырьмя другими, которые в свою очередь окружены четырьмя следующими атомами, находящимися на тех же расстояниях 0,235 нм. Таким образом, в кристаллической решетке кремния все атомы его тождественны друг другу, т. е. отсутствуют молекулы. [c.18]

    Общая химия. Неорганическая химия. Неорганическая химия — это химия элементов Перив ической системы и образованных ими простых и сложных веществ. [c.6]

    Большинство известных простых и сложных веществ в обычных условиях представляют собой твердые тела. Одной из важнейших задач современной неорганической химии является исследование свойств твердых тел в зависимости от их состава и структуры. Изучение твердых тел, которое интенсивно развивается в течение последних десятилетий и обусловлено растуищми потребностями различных областей новой техники, заставляет с новых позиций подойти к пониманию фундаментальных законов общей химии (представления о валентности, стехиометрические законы и др.). Успехи химии металлов, химии полупроводников и вообще химии твердого состояния оказывают в настоящее время определяющее влияние на развитие химической науки в целом и неорганической химии в частности. [c.185]

    Изучение свойств простых веществ имеет фундаментальное значение в неорганической химии. Оно является первым этапом в описательной химии элементов. Последовательное и аналитическое восприятие фактического материала о свойствах простых веществ (физических, физико-химических, химических) позволяет составить общее представление о химическом облике элемента, предвидеть природу химической связи, состав и свойства его характеристических соединений, их кислотно-основные и окислительно-восстановительные характеристики и т.п. Принципимьная особенность простых веществ состоит в том, что при рассмотрении их свойств нет необходимости учитывать вопросы, связанные с постоянством или переменностью состава, поскольку состав простых веществ, естественно, всегда постоянен. Однако даже у простых веществ следует учитывать явление аллотропии и наличие собственных дефектов в реальном кристалле, что позволяет выявить зависимость свойств простых веществ от их химического и кристаллохимического строения. [c.239]

    Основной массив объектов неорганической химии составляк1Т многоэлементные соединения (с числом элементов три и более), которые можно назвать сложными. Если бинарные соединения являются продуктами взаимодействия простых веществ, то сложные, в свою очередь, можно рассматривать как про- [c.279]

    Химия соединений углерода называется органической химией. Так определил предмет органической химии великий русский химик А. М. Бутлеров. Однако не все соединения углерода принято относить к органическим. Такие простейшие вещества, как оксид углерода (П) СО, диоксид углерода СОг, угольная кислота Н2СО3 и ее соли, например СаСОз, К2СО3, относят к неорганическим соединениям. [c.292]

    Руководство по препаративной неорганической химии. Под ред. Георга Брауэра. М., ИЛ, 895 стр. Перевод с немецкого. Содержит описание свыше 1000 синтезов неорганических веществ. В первой части описаны общие лабораторные методы получения неорганических веществ, работы при высоких и низких температурах, в высоком вакууме, в электрических разрядах. Вторая часть содержит описание методов получения простых веществ и их различных соединений. Третья часть посвящена методам получения групп веществ специального назначения (адсорбентов, катализаторов, светящихся препаратов и т. д.). Приводятся сведения о свойствах веществ и литература. [c.384]

    Предыдущие два издания Руководства по прёпаративной неорганической химии получили признание во всем мире. Многие химики из разных стран в той или иной форме выразнлн свою поддержку принципам, положенным в основу настоящего труда. Это руководство должно, по нашему мнению, помочь при проведении в условиях химической лаборатории синтеза многих неорганических соединений, будь то для научно-исследовательских целей или при обучении студентов. Описание подготовки и проведения синтеза отдельных препаратов, за некоторыми исключениями, приведено в достаточно подробном виде, так что не требуется обращаться к оригинальной литературе. Значительная часть прописей проверена на воспроизводимость. При отборе препаратов, подлежащих включению в руководство, мы ставили своей целью, отнюдь не претендуя на исчерпывающую полноту, охватить значительное число соединений, интересных как с научной точки зрения, так и в методическом плане. Напротив, исключены из рассмотрения вещества, имеющиеся в продаже в достаточно чистом виде, или такие, получение которых можно осуществить с применением простейших лабораторных приемов, а также вещества, представляющие узко специальный интерес. [c.8]


Смотреть страницы где упоминается термин Р а з д е л ГГ. НЕОРГАНИЧЕСКАЯ ХИМИЯ Простые вещества: [c.24]    [c.275]    [c.113]    [c.208]    [c.6]    [c.13]    [c.21]   
Смотреть главы в:

Химия, пособие для поступающих в ВУЗ -> Р а з д е л ГГ. НЕОРГАНИЧЕСКАЯ ХИМИЯ Простые вещества




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Химия неорганическая

неорганических веществ



© 2025 chem21.info Реклама на сайте