Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры и сополимеры на основе бутадиена

    Наряду с каучуками и латексами резиновая промышленность потребляет некоторые жесткие полимеры, обладающие значительно меньшей эластичностью, чем каучук, и применяемые главным образом в производстве пластических масс. К таким полимерам относятся полиизобутилены, бутадиен-стирольные сополимеры с высоким содержанием стирола феноло- и резорцино-феноло-формальдегидные полимеры, поливинилхлорид и др. Они применяются как добавки к каучуку в резиновых смесях и в пропиточных составах. Например, современные пропиточные составы для обработки технических тканей, особенно корда, изготавливаются на основе латексов и термореактивных полимеров, преимущественно резорцино-феноло-формальдегидных. [c.496]


    Экстракция урана и плутония из растворов азотной кислоты растворами краун-эфиров Дисперсии полимеров на основе фосфонатов, сополимеров винилтолуола с акриловой кислотой или бутадиеном [c.382]

    Сополимеры стирола и нитрила акриловой кислоты (8 2 или 7 3), совмещенные с бутадиен-нитрильным каучуком (15—20 вес.%), или графт-полимеры стирола и нитрила акриловой кислоты на полибутадиене. Смолы АБС обладают высокой ударной вязкостью и маслостойкостью. Применяются для повышения жесткости и масло-бензостойкости резин на основе бутадиен-нитрильных каучуков особенно при изготовлении прозрачных и цветных изделий, а также в смесях на основе поливинилхлорида. [c.397]

    Бутадиен-стирольные дисперсии являются одними из самых крупно-тоннажных и дешевых. Однако по адгезионным и физико-механическим свойствам бутадиен-стирольные сополимеры уступают ряду других полимеров, на основе которых можно получать дисперсии. Несмотря на это, в последнее время эти клеи стали конкурировать с акрилатными, поливинилацетатными и другими дисперсионными клеями. Это объясняется, с одной стороны, их сравнительно низкой стоимостью и достаточной, сырьевой базой, а с другой, тем, что их легко модифицировать или вводить при сополимеризации третий сомономер, в результате чего получаются дисперсии, которые по адгезионным показателям и некоторым технологическим свойствам (например, малому пенообразованию) превосходят другие дисперсии. [c.96]

    Создание этилен-винилацетатного сополимера позволило удовлетворить и эти требования . Свойства этого полимера существенно зависят от его химического строения и соотношения этилена и винил-ацетата. Оптимальные показатели достигаются при мольной доле винилацетата 45%. Он обладает стойкостью к длительному воздействию температур в диапазоне до 120°С, а при кратковременном воздействии не теряет своих свойств даже при температуре около 200 °С. Этр позволило восполнить пробел в области термостойких эластомеров, существовавший из-за низкой температуростойкости резин на основе бутадиен-стирольных каучуков. [c.103]

    Резиновые смеси. Полярность Б.-н. к. ограничивает возможность их совмещения с неполярными полимерами, напр, с натуральным каучуком. При замене в смесях 20 мае. ч. бутадиен-нитрильного каучука на натуральный каучук улучшаются технологич. свойства (пластичность, клейкость) смесей, но снижаются тепло- и маслостойкость вулканизатов. С увеличением содержания связанного акрилонитрила совместимость Б.-н. к. с натуральным каучуком ухудшается. С не-наполненными бутадиен-стирольными каучуками Б.-п.к. совмещаются лучше, чем с натуральным. Количество бутадиен-стирольных каучуков в композиции с Б.-н. к. может достигать 40%. При этом уменьшается склонность смесей к подвулканизации, улучшается их шприцуемость, повышаются твердость и эластичность и ухудшается маслостойкость вулканизатов. Б.-н. к. хорошо совмещаются с полихлоропреном резины на основе этих композиций превосходят резины из Б.-н. к. по атмосферостойкости, но уступают им по стойкости к набуханию, особенно в ароматич. растворителях. Введение полихлоропрена способствует также повышению эластичности по отскоку и сопротивления раздиру вулканизатов. При совмещении Б.-н. к. с феноло-формальдегидными смолами улучшаются технологич. свойства смесей, повышаются прочность при растяжении, сопротивление раздиру, твердость, масло- и износостойкость и уменьшается остаточное сжатие вулканизатов. В смеси на основе Б.-н. к. можно ввести до 75 мае. ч. феноло-формальдегидных смол (здесь и далее количество ингредиентов указано в расчете на 100 мае. ч. каучука), эффект их действия повышается с увеличением содержания связанного акрилонитрила в сополимере. [c.154]


    В качестве П. в. находят также применение полимеры с большим мол. весом, нерастворимые или образующие высоковязкие р-ры даже при низких концентрациях. Такие полимеры можпо наносить на поверхность из расплавов методами газопламенного или вихревого напыления (полиэтилен, полиамиды), а также в виде суспензий в воде (бутадиен-стирольные и поливинилацетатные латексы) или в пластификаторах (пластизоли па основе полимеров и сополимеров винилхлорида и др.). Это дает возможность, не используя растворителей, получать при однократном нанесении сравнительно толстые пленки (100—1000 мк и более) со свойствами, отличными от свойств обычных лакокрасочных покрытий (повышенная прочность, обусловленная большой длиной цени макромолекул, химич. стойкость, термостойкость и др.). [c.44]

    Некоторые эластомеры, в частности натуральный каучук, полихлоропрены и бутадиен-стирольные сополимеры с высоким содержанием бутадиена, являясь почти полностью аморфными в обычных условиях, становятся высококристаллическими при сильном растяжении или хранении в определенной, характерной для каждого полимера области низких температур. При увеличении степени вулканизации скорость и степень кристаллизации уменьшаются. В резинах из натурального каучука имеется определенное соотношение между кристалличностью и степенью вулканизации, что было положено в основу одного из ранних методов измерения степени вулканизации — метода Т-50 > . [c.99]

    Стереоспецифические катализаторы. Используя катализаторы на основе алкилов алюминия и четыреххлористого титана (такие стереоспецифические катализаторы рассматриваются в гл. 9) можно получить блок-сополимеры в две стадии. Один из мономеров полимери-зуют в среде инертного растворителя с образованием растворимого полимера с активным концом цепи. При последующем добавлении второго мономера происходит блок-сополимеризация. В качестве первого мономера можно использовать пентен-1, октен-1, циклогексен, бутадиен и изопрен бромистый и хлористый аллилы, хлористый металлил, изопрен, бутадиен, стирол, бутен-1, октен-1 и хлоропрен могут быть вторыми компонентами таких реакций [37]. [c.92]

    Аналогичные закономерности в изменении свойств покрытий наблюдаются [59, 70, 91] при использовании в качестве подслоя для покрытий из полиэфиров и эпоксидов бутадиен-стирольных каучуков, а также сополимеров на основе метилметакрилата и бутилакрилата (рис. 2.41) для покрытий на основе поливинилхлорида, полиэтилена — бутадиен-нитрильных каучуков [24], образующих эластичные пленки с хорошей адгезией к покрытию и к подложке. При использовании эластичного подслоя резкое понижение внутренних напряжений при формировании покрытий наблюдается только при оптимальной его толщине. С уменьшением толщины подслоя до 30—40 мкм указанные полимеры теряли свои высокоэластические свойства и не обеспечивали релаксации внутренних напряжений при формировании на поверхности их покрытий. Показано [92], что причина этого явления связана с особенностями надмолекулярной структуры тонких пленок п зависимостью ее от толщины покрытия. [c.91]

    Для окраски жилых и служебных помещений все большее применение находят водоэмульсионные краски на основе синтетических латексов и эмульсий (поливинилацетата, сополимер стирола с бутадиеном СКС-65 ГП, алкидных смол, акриловых смол). Эти краски находят также широкое применение,в жилищном строительстве, в железнодорожном транспорте и т. п. Особенно хорошую стойкость в атмосферных условиях показали водоэмульсионные краски на основе поливинилацетата или акриловых полимеров. [c.154]

    Может быть использован для вспенивания поливинилхлорида, полиолефинов, полиамидов, полиэпоксидов, полисилоксанов, пластиков на основе ацетата и ацетобутирата целлюлозы, полимеров и сополимеров акрилонитрила и акрилатов, поливинилиденхлорида, полиэфиров, поливинилацетата, сополимера акрилонитрила с бутадиеном и стиролом, сополимеров винилхлорида, сополимера этилена и пропилена, каучуков и резин. Дозировка 2—10%. [c.236]

    Введение в состав бутадиен-стирольных сополимеров мономеров, содержащих ионогенные группы, обеспечивает повышение адгезии к металлу и способность образовывать пространственный полимер в присутствии солей и окислов поливалентных металлов, используемых в качестве пигментов. На основе таких композиций получают покрытия по стали, а также [c.121]

    Метод электроосаждения для получения покрытий из воднодисперсионных лакокрасочных материалов в настоящее время используется весьма ограниченно. В качестве пленкообразователей чаще всего применяют дисперсии полимеров, содержащих ионогенные группы, — сополимеров гидрофобных мономеров (акрилаты, стирол, бутадиен, винилацетат) с мономерами, имеющими диссоциирующую группу (акриловая, метакриловая, фумаровая, итаконовая и другие ненасыщенные карбоновые кислоты). Довольно широко используются дисперсии полиолефинов, политетрафторэтилена и других фторсодержащих полимеров, заряд частицам которых сообщают низко- или высокомолекулярные полиэлектролиты на основе карбоксилсодержащих сополимеров акриловых эфиров [5]. [c.185]


    Поливинилхлорид. В наиболее явном виде кинетические явления в процессах деформации полимеров в жидких средах проявляются при изучении механических характеристик в широком диапазоне скоростей деформирования. Такое исследование было проведено в работе [165], в которой наряду с изучением влияния жидких сред на механическое поведение ПВХ, была выявлена роль каучукового модификатора МБС (латекс на основе тройного сополимера метилметакрилат — бутадиен — стирол). ПВХ, содержащий 15 % МБС (МПВХ), действительно показывал высокую стойкость к ударным нагрузкам и заметно отличался от ПВХ по характеру микрорастрескивания при его растяжении в ААС. [c.122]

    Резиновая смесь на основе бутадиен-ни-трйльного каучука, хлорированных полимеров и эпоксидного олигомера Сополимер бутадиена, акрилонитрила и метилвинилпириди-на [c.189]

    Использование бутадиен-стирольных смол в смесях с бутадиен- стирольным каучуком наиболее эффективно ввиду близкой плотности энергии когезии смешиваемых полимеров. Повышение прочностных свойств вулканизатов, полученных на основе смеси каучука с высокостирольной смолой, по сравнению с вулканизатами сополимеров с аналогичным содержанием стирола объясняется, вероятно, тем, что высокостирольная смола является своеобразным активным наполнителем. Хотя известно, что размер частиц- бутадиен-стирольных смол составляет 125 мкм и выше, т. е. в 3000 раз больше частиц усиливающей канальной или печной сажиЧ [c.41]

    Сополимеры стирола с бутадиеном получают методом эмульсионной полимеризации в виде латексов Наличие двойных связей в молекуле сополимера обусловливает образование необратимого покрытия за счет аутоокислительной полимеризации, ускоряющейся на свету Однако в результате протекания химических реакций полимер может потемнеть, а покрытие растрескаться Поэтому лакокрасочные материалы на основе этих сополимеров используются преимущественно для покрытий, эксплуатируемых внутри помещений Для увеличения атмосферостойкости покрытий к сополимеру стирола и бутадиена добавляют алкилфенольные олигомеры [c.178]

    В случае полимеризации виниловых соединений щелочными катализаторами карбанионный механизм не согласуется с наличием влияния природы металла на структуру полимера и влиянием полярности связи углерод — металл на состав сополимеров стирола и бутадиена. Механизм ступенчатого присоединения мономера к связи углерод — металл не согласуется с наличием индукционного периода, отсутствием зависимости скорости полимеризации изопрена при высоких концентрациях бутиллития от концентрации последнего. Кроме того, мономеры, обладающие примерно равной полярностью и поляризуемостью (например, стирол и бутадиен), сополимс-ризуются со скоростями, характерными для раздельной полимеризации. На основе приведенного экспериментального материала выдвигается гипотеза о том, что активными центрами при полимеризации виниловых соединений, вероятно, являются малоустойчивые комплексные образования ион-дипольного характера, сольватированпые молекулами мономера, а полимеризация виниловых соединений катализаторами щелочного типа относится к особому случаю цепного катализа. [c.536]

    Привитые и блоксополимеры на основе В. или поливинилхлорида, в зависимости от природы второго компонента, характеризуются различными свойствами а) негорючестью (полистирол, поли-метилметакрилат, триаллилфосфат) б) высокими физи-ко-мехапич. свойствами (простые или сложные аллиловые или метакриловые эфиры, напр, диалкилфталат, диаллилмалеинат, триаллилцианурат) в) повышенной растворимостью в органич. растворителях, что особенно важно при формовании из сополимеров пленок и волокон (акриламиды) г) высокой гибкостью и эластичностью (полиакрилаты) д) высокой ударной вязкостью и низким водопоглощением (каучуки) е) высокой адгезией (пиперилен, бутадиен, изопрен, акрилонитрил, бу-тилакрплат). Волокна с хорошей накрашиваемостью получают при полимеризации 4-винилпиридина в р-ре сополимера В. с винилацетатом в метилэтилкетоне при 70 °С. Прививкой прризводных акролеина или моноокиси бутадиена на поливинилхлорид или статистич. сополимеры В. в среде кетонов, ароматич или галогенсодержащих углеводородов получены привитые сополимеры, обладающие клеющими свойствами. Выпуск сонолпморов на основе В., в тем числе и с винилиденхлоридом (см. Винилиденхлорида сополимеры), составляет 4—7% от общего количества выпускаемых полимерных продуктов на основе В., включая и поливинилхлорид (см. Винилхлорида полимеры). Наблюдается тенденция к постоянному увеличению производства сополимеров винилхлорида. [c.228]

    Сравнительно недавно [233] проведено исследование морфологических особенностей ВПС, ПВПС и привитых сополимеров, полученных на основе комбинации поли (бутадиен-со-стирол)/полистирол (рис. 8.26). Бутадиеновую фазу контрастировали тетраокси-дом осмия, поэтому на рисунке это темные области. На рис. 8.26, а представлена микрофотография промышленного привитого сополимера (ударопрочного полистирола). На рис. 8.26,6 показана смесь бутадиен-стирольного каучука (БСК) с полистиролом (ударопрочного полистирола), полученная без перемешивания и последующего обращения фаз поэтому фаза БСК непрерывна. На рнс. 8.26, в показана морфология ПВПС первого рода, элементы которой значительно мельче элементов ПВПС второго рода (рис. 8.26, г). Наконец, на рис. 8.26, д показана ВПС, оба полимера в которой сшиты. [c.225]

    Сравнительно недавно Манабэ и др. [567] провели проверку уравнения (12.49). Ими определен коэффициент теплового расширения нескольких смесей эмульсий полимеров, в том числе полибутадиена, диспергированного в полистироле, и сополимера стирола с бутадиеном, диспергированного в полиметилметакрилате. В этих системах наполнитель , или дисперсная фаза, имеет более низкий модуль, чем матрица однако это не оказывает влияния на аргумент. Как показано на рис. 12.32 и 12.33, экспериментальные результаты для коэффициентов расширения в стеклообразном состоянии для обеих упомянутых систем хорошо совпадают с рассчитанными по уравнению (12.49), которое эквивалентно уравнению Кернера (12.48). В то же время эти результаты, очевидно, не согласуются с линейным соотношением, полученным на основе аддитивности объемов. Следует мимоходом отметить, что закон линейной аддитивности очень сходен с уравнениями (12.48) и (12.49), которые объясняют возможность инверсии фаз (т. е. когда фаза с меньшей концентрацией становится непрерывной) относительно морфологии в области инверсии (см. разд. 1)  [c.354]

    Основным материалом, определяющим свойства Р., является каучук. Содержание его в Р. может составлять 10—98%. Свойства каучуков общего и специальпого назначения и Р. на их основе приведены в табл. 1 и 2. Для изготовления изделий, эксплуатируемых при 150 — 180°, применяют Р. из бутилкаучука или сополимера этилена и пропилена. Такая Р. обладает также высокой озоностойкостью и стойкостью к действию агрессивных сред. На основе каучуков с малым межмолекулярным взаимодействием (низкой плотностью энергии когезии) и гибкой молекулярной цепочкой изготовляют морозостойкую Р. Для создания термостойкой Р. наибольший интерес из каучуков с углеродным скелетам представляют фторсодержащие полимеры, к-рые наполняют силикатами или баритами и вулканизуют облучением илп перекисями в сочетании с диаминами. Для работы при 300° и выше перспективна Р. на основе элементоорганич. каучуков (кремнийорганич. и алюмоорга-пич.), наполненная специально обработанной окисью кремния, а также Р. из неорганич. полимеров с гибкими цепями (тина. полифосфорнитрилхлорида). Р., содержащие минеральные наполнители, являются хорошими диэлектриками. Вводя в каучук высокоструктурную, типа ацетиленовой, сажу (свыше 50 вес. ч. на 100 вес. ч. каучука), можно получить токопроводящие резины. Для получения Р., годной для защиты ог облучения, наиболее целесообразно использовать фторсодержащие и бутадиен-нитрильный каучуки в этом случае наполнителями служат окись свинца или барит. Для уменьшения стоимости в нек-рых Р. часть каучука заменяется на регенерат (см. Резины регенерация). [c.303]

    С увеличением гибкости цепей, заключенных между соседними химическими узлами сетки, или с приближением температуры к Гс сетчатого полимера его ударная прочность увеличивается с одновременным и более интенсивным снижением жесткости и прочности в статических условиях нагружения. Чтобы повысить ударную прочность без катастрофического снижения жесткости и статической прочности, необходимо создавать блоксополимеры сетчатой структуры с чередованием жестких и гибких участков с тем, чтобы в процессе отверждения упаковки цепей полимерной сетки гибкие ее участки составляли самостоятельную фазу, диспергированную в жесткой фазе и химически связанную с ней [61]. Это достигается введением в связующее небольшого количества эластичного полимера, способного участвовать в формировании структуры сетчатого полимера и выделяться в виде высокодиспергирован-ной фазы. Например, для повышения ударной прочности отвержденных фенолоформальдегидных смол вводят поливинилбутираль в резольную смолу (связующее БФ) или бутадиен-акрилонитриль-ный каучук в новолачную смолу (связующее ФК). Эластичный полимер образует высокодиспергированную фазу в жесткой отвержденной смоле. С развитием производства эластичных олигомеров с молекулярным весом 10 —10 с функциональными группами в концевых звеньях, легко вступающими в реакции с функциональными группами связующих [63], появилась возможность повышать ударную прочность густосетчатых полимеров, создавая сетчатые блоксополимеры. Ниже приведены свойства отвержденного блок-сополимера на основе эпоксидной смолы и низкомолекулярного каучука — сополимера бутадиена с акрилонитрилом с молекулярным весом 3500 и с концевыми карбоксильными группами [64]. При введении каучука до 5 вес. ч. на 100 вес. ч. смолы наблюдает- [c.111]

    В настоящее время заводы лакокрасочной промышленности производят ряд олигомерных пленкообразователей — фенольные, мочевино- и меламино-формальдегидные, эпоксидные, эпоксиурета-иовые, алкидно-стирольные, алкндно-акриловые и др. Кроме того, в лакокрасочной промышленности применяется большое количество полимеров — хлорированный поливинилхлорид (перхлорвинил), поливинилбутираль, сополимеры винилхлорида с винилацетатом, фторполимеры, бутадиен-стирольный латекс, поливинилацетат, полиакрилаты и др. На основе этих пленкообразователей выпускается большой ассортимент лаков и эмалей различного назна-чения . [c.116]

    Мы подробно остановились на вопросах образования чередующихся сополимеров пропилена с бутадиеном в связи с особым интересом, проявляемым к сополимерам такого типа, представляющим собой углеводородные эластомеры, способные, очевидно, вулканизоваться аналогично полибутадиену или полиизопрену. Это направление дает новые возможности для создания с помощью чередующейся сополимеризации различных типов полимеров (в частности, и на основе оле-фияов), содержащих в макромолекуле полярные группы, сообщающие этим сополимерам ценные свойства. К ним относятся сополимеры олефинов с акрилонитрилом, акрилатами и другими мономерами. [c.309]

    К полимеризационным смолам, используемым для проювод-ства лакокрасочных материалов, в первую очередь следует отнести продукты дополнительно хлорированного полимера винилхлорида, а также различные полимеры, полученные на основе винилхлорида с другими мономерами (винилиденхлоридом, винилацетатом, акриловыми эфирами и др.). Большое значение для производства лакокрасочных материалов имеют также полимерные соединения, полученные на основе винилацетата и сополимеров стирола с бутадиеном и др., которые применяют в качестве дисперсий и латексов для изготовления водоэмульсионных красок. Следует рассмотреть также получение некоторых акриловых полимеров, которые в последнее время применяют для получения различных лаков и эмалей. Они отличаются исключительной светостойкостью и устойчивостью в атмосферных условиях. [c.170]

    К термореактивным клеям относятся клеи на основе амино-пластов, эпоксидов, фенопластов, полибензимидазолов и ноли-бензтиазолов, полиамидов, полиэфиров (ненасыщенных), поли-имидов, полиизоцианатов и смесей этих полимеров. К эласто-мерным — полихлоропреновые, бутадиен-стирольные, бутилкау-чуковые и полиизобутиленовые, нитрильные (нитрилкаучуко-вые), полисульфидные (тиоколовые), силиконовые, на основе натурального каучука. К термопластичным — клеи на основе полиакрилатов, производных целлюлозы, иономеров, полиамидов, полиуретанов, виниловых полимеров и сополимеров, полистирола, полисульфонов, клеи-расплавы. Ясно, что такое деление довольно условно. Например, некоторые полиуретаны являются термопластичными каучуками или эластомерами и т. д. [c.109]

    Сам полистирол, известный под названием тролитул , стирофлекс , стирон и др., находит широкое применение, например в электротехнической промышленности в качестве изоляционного материала, в текстильной промышленности (стирофлексный шелк) и во многих других областях. Кроме того, сополимеры стирола являются основой некоторых видов других известных пластических масс. Среди них наиболее известным является сополимер стирола с бутадиеном, называемый буна-8 специальным электротехническим целям служит сополимер с винилкарбазолом. Для производства лаков рекомендуют смешанный полимер стирола с эфирами ненасыш енных кислот и многоатомных спиртов [718а]. [c.156]

    Национализация установок ио производству полимеров и методов получения каучуков, а также развитие процессов изготовления мономеров на основе нефтехимических продуктов, привели к колебаниям в ценах на натуральный каучук и к стабилизации цен на бутадиен-стирольный сополимер (рис. 3), благодаря чему доля нотреблення синтетического каучука за последние годы все больше и больше возрастает. [c.450]

    На основе полиизобутилена фирмой Стандарт Ойл [9] был разработан процесс, приводящий к получению поддающегося вулканизации весьма эластичного материала. Это было достигнуто сополимеризацией изобутилена с малыми количествами конъюгированных диолефинов (как изопрен, бутадиен и 2,3-диметилбутадиен и др.). Полученные таким путем сополимеры известны под названием бутилкаучук. После того, как он первоначально изготовлялся только Стандарт Ойл оф Нью Джерси и Полимер Корпорейшн в Канаде, через некоторое время к его изготовлению приступили во Франции (фирма Сокабу). В СССР производство бутилкаучука налажено с конца 1956 г. [c.500]

    Сополимеризация бутадиена с акрилонитрилом дает возможность значительно увеличить полярность полимера. Вследствие этого температура стеклования сополимера при соотнощении исходных мономеров 1 1 возрастает до —35°С (вместо —70°С для полибутадиена). Резины на основе таких сополимеров менее эластичны и морозостойки по сравнению с полибутадиеновыми, но более прочны и не набухают в бензине, керосине и смазочных маслах. Из бутадиен-нитрильных каучуков изготовляют резиновые баки для хранения жидкого топлива и смазочных масел, бензо-и маслостойкие детали, эластичные маслостойкие щланги и т. п. [c.299]

    Многие винильпые мономеры могут полимеризоваться при диспергировании их в воде при помощи таких эмульгирующих агентов, как мыла, в присутствии водорастворимых инициаторов. Попытка осуществить такую полимеризацию была впервые предпринята, но-видимому, с целью моделировать процесс образования натурального каучука в живом растении, соединяя молекулы изопрена в полимерные цепи . Хотя в настоящее время установлено, что изопрен сам по себе не участвует в биосинтезе каучука, метод эмульсионной полимеризации оказался в высшей степени плодотворным и приобрел исключительное техническое значение, особенно в производстве синтетического каучука. Фактически этот метод оказался единственным практическим способом проведения радикальной полимеризации для получения высокополимеров из таких сопряженных диенов, как бутадиен. При этом могут быть получены как индивидуальные полимеры, так и сополимеры на основе диенов. [c.161]

    Весьма интересно сопоставить свойства простых сополимеров бутадиена и акрилонитрила (бутадиен-нитрильные каучуки СКН) и привитого сополимера, полученного на основе тех же компонентов и при одинаковом соотношении их в макромолекулах обоих сополимеров. Привитые сополимеры полибутадиена и акрилонитрила после вулканизации, как и вулканизаты каучука СКН, превосходят вулканизаты натурального каучука или полибутаднена по теплостойкости и атмосферостойкости. Привитой сополимер отличается большей прочностью и эластичностью по сравнению с сополимером бутадиена и акрилонитрила. В отсутствие усиливающего наполнителя предел прочности при растяжении вулканизатов привитого сополимера может достигать 174 кгс1см , относительное удлинение 765%, тогда как предел прочности при растяжении вулканизатов си-полимера бутадиена и акрилонитрила обычно не превышает 35 кгс см , относительное удлинение 240%. [c.612]


Смотреть страницы где упоминается термин Полимеры и сополимеры на основе бутадиена: [c.290]    [c.457]    [c.457]    [c.218]    [c.271]    [c.276]    [c.214]    [c.211]    [c.84]    [c.81]    [c.393]   
Смотреть главы в:

Эмульсионная полимеризация и её применение в промышленности -> Полимеры и сополимеры на основе бутадиена




ПОИСК





Смотрите так же термины и статьи:

Бутадиен сополимеры



© 2025 chem21.info Реклама на сайте