Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита от питтинговой коррозии

Рис. 1.17. Графическое представление гальванического взаимодействия на поры в покрытии металлом а — анодное покрытие оказывает протекторную защиту катодному основному материалу б и в —действие коррозии на анодный основной материал усиливается под влиянием катодного покрытия, приводящего к питтинговой коррозии основного материала и отслаиванию покрытия г п д — закупорка продуктами коррозии и поры, приводящие к увеличению сопротивления Рис. 1.17. <a href="/info/796492">Графическое представление</a> гальванического взаимодействия на поры в <a href="/info/7236">покрытии металлом</a> а — <a href="/info/58932">анодное покрытие</a> оказывает <a href="/info/400211">протекторную защиту катодному</a> основному материалу б и в —<a href="/info/71654">действие коррозии</a> на <a href="/info/1774397">анодный основной</a> <a href="/info/1812825">материал усиливается</a> под <a href="/info/638072">влиянием катодного</a> покрытия, приводящего к питтинговой <a href="/info/1760232">коррозии основного материала</a> и <a href="/info/935055">отслаиванию покрытия</a> г п д — закупорка <a href="/info/71653">продуктами коррозии</a> и поры, приводящие к увеличению сопротивления

    Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода. [c.227]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    В последние годы в СССР и за рубежом широкое распространение для защиты от коррозии различных стальных конструкций получили алюминиевые покрытия. Для их получения на внутренней и наружной поверхности труб применяют в основном горячее алюминирование. При погружении стали в расплавленный алюминий образуются промежуточные соединения алюминия и железа переменного состава, более твердые и менее вязкие, чем чистый алюминий. Хлориды стимулируют питтинговую коррозию алюминия. Сульфаты являются ингибиторами коррозии в водах, где их концентрация превышает концентрацию хлоридов. В таких водах алюминиевые трубы проявляют высокую стойкость против коррозии, несмотря на довольно высокую концентрацию хлоридов. Однако с повышением pH выше 8,5 стойкость алюминия уменьшается. Алюминиевое покрытие, являясь анодным защитным покрытием, при температурах, характерных для систем горячего водоснабжения, осуществляет протекторную защиту стали в дефектах покрытия. [c.147]


    Хром вызывает питтинговое поражение находящегося под ним блестящего никеля. Этот процесс продолжается до тех пор, пока коррозия достигнет стали (см. рис. 1.18, а). Однако блестящий никель, являясь анодом для полублестящего никеля, создает ему анодную защиту, и коррозия, таким образом, протекает по поверхности. В подобных случаях коррозия не распространяется на полублестящий слой никеля (см. рис. 1.18, б). Образовавшаяся характерная плоская язва является не настолько скрытой, как при разрушении никеля и коррозии основного металла, приводящих к вздутию покрытия и поражению поверхности ржавчиной (или образованию белых продуктов коррозии, если в качестве основного металла служит сплав на основе цинка). В атмосфере, загрязненной промышленными отходами, содержащими серу, никель активизируется. Вследствие этого возникают сквозные язвы в основном слое (особенно в сплавах на цинковой основе), что приводит к образованию углублений, вздутий и отслаиванию покрытий. [c.48]

    Следует заметить, что цинк обеспечивает катодную защиту стал только при температуре ниже 50 °С. При более высокой температур разность их электродных потенциалов может обращаться, проход через О, так что цинк становится более благородным, чем сталь Поэтому в резервуарах горячей воды, изготовленных из оцинковав ных стальных листов, цинковое покрытие может вызывах питтинговую коррозию стали. [c.76]

    Некоторые меры защиты, такие как дробеструйная обработка и нанесение покрытий, способствуют значительному замедлению КР однако они не исключают необходимости разработки сплавов, стойких к КР. Возможна следующая последовательность стадий, приводящая к разрушению полностью защищенной детали (рис. 143). Механическое разрушение может вызвать потерю защиты анодного слоя, грунта и верхнего покрытия, таким образом среда достигает нагартованного дробеструйной обработкой слоя. В соответствующих условиях питтинговая коррозия может привести к сквозному в нагартованном слое поражению, способствующему зарождению КР в нестойком материале в присутствии растягивающих напряжений. Следует остановиться на требованиях в инструкциях воздушных сил США, согласно которым штамповки и прессованные алюминиевые материалы, применяемые в авиации в коррозионных средах, необходимо подвергать предварительно испытаниям в течение 2000 ч при переменном погружении без защиты в коррозионную среду. Окончательная механическая обработка должна гарантировать отсутствие высоких остаточных поверхностных напряжений растяжения [252 а]. Лучшим путем исключения требований, связанных с проведением таких испытаний, является применение стойких к КР материалов. [c.310]

    Из всех известных в настоящее время материалов титан и его сплавы относятся к числу наиболее стойких к морским средам при обычных температурах. Тонкая окисная пленка, образующаяся на поверхности титановых сплавов, обеспечивает полную защиту металла от коррозии. Разрушение этой пассивной пленки происходит только в специальных условиях. Несмотря на очень высокую общую стойкость титана, все же существует несколько коррозионных проблем, связанных с его использованием в морских условиях [68] питтинговая коррозия, наблюдающаяся в щелевых условиях при недостатке кислорода и температуре морской воды выше 120 °С коррозионное растрескивание высокопрочных титановых сплавов при наличии поверхностных дефектов на металле, к которому приложено растягивающее напряжение коррозионное растрескивание в солях при нагреве выше 260 °С. Эффективными мерами борьбы с этими видами преждевременного разрушения титановых сплавов являются легирование и термообработка. [c.116]

    Тонкое гальваническое покрытие титана платиной может служить своеобразным методом анодной защиты титана в морской воде [179]. Известно, что в морской воде при поляризации титана большими токами наступает пробой пассивной пленки хлор-ионами и происходит питтинговая коррозия. Из рис. 117 видно, что при поляризации потенциал платинированного титана до значительной плотности анодного тока не смещается в положительную сторону, следовательно, металл остается в устойчивом состоянии. Таким образом, в условиях применения титана в морской воде или других нейтральных хлоридных растворах при интенсивной анодной поляризации платинирование поверхности будет хорошей защитой. Подобное платинирование поверхности титана используют для изготовления нерастворяющихся устойчивых титановых анодов при катодной защите в морской воде или растворах хлоридов. [c.168]

    Натрий двухромовокислый, а также его смесь с натрием ( к>сфорнок ИСлым при концентрации до 100 мг/л, даже судя по их влиянию на скорость коррозии, не обеспечивают необходимой степени защиты. Скорость общей коррозии углеродистой стали при концентрации натрия двухромово кислого 150—200 мг/л снижается в 4—5 раз по сравнению со скоростью коррозии в воде без добавок, однако характер поражения стали близок к питтинговой коррозии. [c.223]


    В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [22 ], который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия. [c.224]

    Ворота Панамского канала защищены внешней катодной поляризацией, причем капитальные затраты на оборудование защиты составили менее 0,5 % затрат, необходимых для замены ворот. Одно из важнейших преимуществ применения катодной защиты в данном случае заключается в том, что отпадает необходимость в длительных периодических перерывах для проведения ремонтов, обусловленных коррозионными разрушениями. Аналогично, катодно защищенный корабль может в принципе использоваться более долгое время между ремонтами в сухом доке, что приводит к ежегодной экономии в тысячи долларов. Кроме того, существенное экономическое преимущество заключается в предотвращении коррозионного растрескивания под напряжением, коррозионной усталости и питтинговой коррозии конструкционных материалов. [c.228]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Поскольку коррозионное растрескивание, так же как и питтинговая коррозия, является ло своей природе электрохимическим процессом, развивающимся в результате депассивации части металлической поверхности, стойкость металла к данному виду разрушения определяется прежде всего стабильностью возникающей на нем пассивирующей пленки [152,153] и может регулироваться эа счет регулирования электродного потенциала металла. В настоящее время хорошо известно, что наложение катодной поляризации затрудняет, а анодной - облегчает развитие коррозионного растрескивания. Так, например, катодная поляризация аустенитной нержавеющей стали в кипящем растворе Mg l2 током 3 10"5 а/см обеспечило защиту ее от растрескивания на протяжении всего опыта, длившегося 24 ч [154]. Показано также [ 155], что полную защиту стали 18/9 в кипящем 42%-ном растворе Mg l2 удается обеспечить катодной поляризацией ее током 1,5 10-4 а/см2. [c.35]

    Очень важное применение катодная защита находит для подавления местных видов коррозии медных сплавов, нержавеющих сталей в растворах хлоридов и в морской воде. Применение протекторов пз углеродистой стали, выполняемых в виде отдельных деталей конструкции или специальных протекторов, обеспечивает защиту медных сплавов от струевой и язвенной коррозии, нержавеющих сталей от питтинговой коррозии. Перспективно направление по созданию композитных конструкций, где за счет других деталей, элементов обеспечивается протекторная катодная защита наиболее ответственных узлов (запорные органы клапанов, рабочие колеса насосов, теплообменные трубы и т. д.). [c.144]

    Для уменьшения склонности к питтинговой коррозии в неподвижной морской воде рекомендуется применять катодную защиту, например соединяя деталь из сплава Монель со стальным узлом конструкции, имеющим большую площадь поверхности. При использовании наложенного тока его величина должна быть равна минимальному значению, необходимому для поляризации сплава, предотвращающей питтингообра-зование, поскольку скорость общей коррозии достаточно мала. [c.85]

    Сг (нихром) или Инконель 600, значительно упрочняет пассивную пленку, но все же не в такой степени, чтобы предотвратить щелевую н питтинговую коррозию в морской воде. Поэтому сплавы никель—хром и никель—хром—железо можно использовать в условиях погружения только в тех случаях, когда приходится иметь дело с быстрым потоком воды, скорость которого достаточна для поддержания пассивности, или же когда применяется катодная защита. В целом названные сплавы более стойки к местной коррозии, чем никель. При определенных условиях для развития [c.85]

    Сплавы Инконель 600 и Инконель Х750 сохраняют пассивность в движущейся, хорошо аэрированной морской воде, но не стойки к коррозии в щелевых условиях. Наблюдается также питтинговая коррозия. Оба сплава стойки в неподвижной морской воде при использовании катодной защиты, а кроме того, они не склонны к коррозионному растрескиванию под напряжением в растворах, содержащих хлор-нонм. На рис. 42 представлены данные о щелевой коррозии сплава Инконель 600 на больших глубинах. Отметим, что в одном случае щелевая коррозия привела к перфорации образца. [c.85]

    Другой метод защиты заключается в плакировании склопиого к коррозии сплава. Подложка будет заиищепа, пока плакирующий металл не израсходуется. На рнс. 68 хорошо видно, как уменьшилась питтинговая коррозия сплава 3003 при плакировании (Алклед 3003-Н 12). [c.142]

    Ряд исследований был посвящен изучению коррозионного растрескивания бериллия под напряжением в солевых растворах. Согласно имеющимся на сегодняшний день данным технически чистый бериллий не склонен к коррозии под напряжением в солевых растворах или в морской воде. В то же время сильная питтинговая коррозия, происходящая в этих средах, значительно снижает способность бериллия выдерживать напряжение. Согласно некоторым данным приложенное напряжение, хотя и не сопровождается увеличением плотности питтингов на поверхности, способствует ускоренному росту отдельных питтпнгов. Применение бериллия в морских условиях требует принятия дополнительных мер противокоррозионной защиты. Высокой устойчивостью в солевых растворах обладают анодированные покрытия с пропиткой силикатом натрия. Используются также алюминиевые покрытия с керамическим связующим (Serme Tel W). Прекрасные результаты получены при нанесении двойного слоя такого материала на предварительно обдутую металлической крошкой поверхность бериллия (сушка при 80 °С п отверждение при 343 С) ГЮ7]. В морских атмосферах это покрытие может использоваться при температурах свыше 200 °С, тогда как анодированное покрытие в этих условиях становится неустойчивым. [c.158]

    Фирма Shell Development ompany провела коррозионные испытания трубных сталей в донных отложениях и над ними в Мексиканском заливе на глубинах от 15 до 150 м [257]. Было показано, что при погружении в ил скорости коррозии отдельных стальных пластинок и плотности тока, необходимые для их катодной защиты, ниже, чем при экспозиции таких же образцов в морской воде непосредственно над илом. В отсутствие катодной защиты скорость коррозии стали в воде над илом достигала 28 мкм/год, а в иле скорости коррозии составляли 30—80 мкм/год. Питтинговая коррозия также была сильнее в воде, чем при погружении в ил. Плотность тока защиты, необходимая для уменьшения скорости коррозии до значения <20 мкм/год, достигала 0,34 мА/дм для образцов в воде и 0,06—0,26 мА/дм для образцов в иле (более глубокому погружению в ил соответствовали меньшие значения). [c.204]

    ПИТТИНГОВАЯ КОРРОЗИЯ, вид коррозии, очаги к-рой в начальной стадии имеют вид точек, а в развитом состоянии — коррозионных язв. Возникает чаще всего на наиб, активных структурных участках пов-сти пассивирующихся металлов и сплавов в электролитич. средах, содержащих адсорбирующиеся анионы (обычно анионы галогенов). Обусловлена тем, что при значениях электродного потенциала, превышающих нек-рый критич. потенциал пштив-гообразования, прекращается возобновление ( залечивание ) пассивирующего слоя (см. Пассивность металлов). Для предотвращения П. к. использ. легирование, добавление в р-р ингибиторов, электрохим. защиту и др. ПИХТОВОЕ МАСЛО, эфирное масло из хвои и молодых веток пихты. Жидк. 0,895—0,915, 1,46 90—1,4720, [c.444]

    Адсорбция И. к. и формирование на пов-сти металла труднорастворимых слоев связаны с гидрофобностью пов-сти и зарядом частиц, их способностью образовывать хим. связи с металлом или продуктами его взаимод. с компонентами агрессивной среды. Как правило, катионоактивные И. к. замедляют активное анодное растворение, т. е. эффс1стивны в области электродных потенциалов, меньших критич. потенциала пассивации, или тормозят катодные р-ции. Для предотвращения питтинговой коррозии более эффективны анионактивные И. к. Часто ионогенные И. к. используют в композиции с разл. добавками для более эффе1стивной защиты металлов в широком диапазоне электродных потенциалов. [c.222]

    Фрейман JI. Я,, Пражак М., Кристаль М. М. и др. Об унификации методов ускоренных испытаний нержавеющих сталей на стойкость против питтинговой коррозии. Основная концепция. Химические испытания // Защита металлов. 1984, Т. 20, № 5. С. 698—710. [c.137]

    В качестве материала для систем горячего водоснабжения широко используется медь. Противокоррозионная защита меди и ее сплавов в основном направлена на борьбу с питтинговой коррозией меди (более 80% всех коррозионных разрушений) и эрозией (около 8%). Питтинговая коррозия меди и медных сплавов бывает двух типов. Первый тип проявляется в усиленном [c.159]

    Основатель современного направления электрохимической науки о коррозии металлов. Выполнил фундаментальные исследования в области электрохимической кинетики коррозионных процессов и показал возможность приложения законов электрохимической кинетики к трактовке процессов коррозии твердых металлов в электролитах. Предложил и широко использовал потенциостатические методы исследования коррозионных процессов. Выработал научный подход к рациональному легированию при создании новых сплавов. Развил адсорбционную теорию пассивности металлов, теорию непосредственного участия компонентов раствора в элементарных стадиях растворения металла, электрохимическую теорию питтинговой коррозии, теорию солевого ингибирования и химической пассивности. Предложил и осуществил новые прогрессивные методы защиты металлов, в том числе метод анодной защиты. [c.248]

    В присутствии ионов NO3 анодная защита может предотвратить питтинговую коррозию, что обусловлено поляризацией в области более положительных потенциалов но сравнению с потенциалом ингибирования питтиигов фин до потенциала перепассивации фпп. [c.21]

    Многокомпонентные растворы солей, содержащие хлориды, нитраты, фосфаты, сульфаты и фториды, щироко используются в сельском хозяйстве. Одной из основных проблем при производстве сложных удобрений является предотвращение интенсивной питтинговой коррозии реакторов и сборников хлоридами, содержащимися в пульпе. Через три года реакторы выходят из строя полностью и их приходится заменять новыми. Изготовление реакторов из высоколегированной стали 6ХН28МДТ не позволяет решить проблему, так как эта сталь также подвергается питтинговой коррозии. Обнадеживающие результаты дает анодная защита от локальных видов коррозии, которая впервые применена в СССР. [c.46]

    С увеличением концентраиии хлоридов в 10 раз фпо смещается на 0,1—0,2 В в сторону более отрицательных значений. Питтинги, возникающие при потенциалах выше фпо, могут в общем случае развиваться и при более отрицательных потенциалах вплоть до так называемого потенциала репассивации питтин-гов фрп, определяемого в процессе поляризационных измерений при обратном смещении потенциала. Поэтому, если в реальных условиях потенциал аппарата находится в области устойчивой пассивности отрицательнее фпо, но положительнее фрп, случайное временное нарушение технологического режима или анодной защиты может привести к возникновению питтингов, которые не пассивируются после возвращения системы в нормальное состояние. Такая опасность становится минимальной, если потенциал стали в обычных условиях имеет более отрицательное значение, чем фрп. Величина фрп в отличие от ф ПО HG ЗАВИСИТ ОТ СОСТОЯНИЯ поверхности, что делает ее важной объективной характеристикой устойчивости к питтинговой коррозии. [c.47]

    Сталь 06ХН28МДТ самопассивируется в растворе гидроксиламинсульфата, обладает высокой коррозионной стойкостью даже при 100°С [35], однако катоды, изготовленные из этой стали, в системе анодной защиты сборников гидроксиламинсульфата при 40 °С [36] подвергаются точечной (питтинговой) коррозии и через 2—2,5 года работы требуют замены. Наибольшая скорость коррозии наблюдается в нижней части катода. В производственном растворе гидроксиламинсульфата область активного растворения катода ограничена потенциалами (—0,4) — — (—0,1 В). Отрицательнее потенциала ф = —0,4 В (рис. 4.14) находится область катодной защиты, положительнее ф = = —0,1 В — область устойчивой пассивности. Влияние режима [c.86]

    Одновременно испытывались ингибиторы. Скорость коррозии незащищенных образцов углеродистой стали колебалась от ОД до 5,8 мм/год. При концентрации бихромата натрия 0,1% (масс.) обеспечивается полная защита ог коррозии. При такой же концентрации роданида аммония эффект защиты 79%- Использование анодной защиты позволило уменьщить скорость коррозии на 90%. В присутствии анодных ингибиторов, таких как хроматы и нитраты, при определенных концентрациях существует опасность питтинговой и щелевой коррозии в присутствии хлор-ионов. Интересно, что анодно защищенный образец не корродировал в газовой фазе. При полевых испытаниях не обнаружена коррозия на границе жидкость — пар. [c.156]

    П р и м е р № 3. Образцы нержавеющей стали 18ХН4ВА в форме цилиндров диаметром 100, длиной 150 мм травили в 20 %-ной серной кислоте с добавкой 0,1 % (по массе) изопертиоциановой кислоты при 60°С. После травления в течение 3 ч коэффициент защиты Z составлял 99 %, а коэффициент ингибирования к =100. Поверхность цилиндра была блестящей, гладкой, без следов питтинговой коррозии. Таким образом, ингибитор эффективен и в случае нержавеющей стали. [c.186]

    Ионы двухвалентных металлов, в частности кальция, обеспечивают более действенную защиту полифосфатами. Поскольку кальций неизменно присутствует в естественных водах, то добавлять его обычно не приходится. Отношение концентрации ионов кальция к полифосфату должно равняться по крайней мере 0,2, предпочтительнее 0,5. Добавление солей кальция необходимо лишь в случае конденсата или мягких вод. Цинк более эффективен, чем кальций, хотя последний все же необходим. Нужно иметь также определенную концентрацию кислорода в воде в отсутствие кальция минимальное содержание кислорода в воде должно быть 1 мл/л, при наличии же кальция концентрация кислорода может быть снижена до 0,15 мл/л. Оптимальное значение рН = = 5—7. В более щелочных средах полифосфаты могут привести к точечной или питтинговой коррозии. [c.190]

    Резервуар для хранения обессоленной питательной воды для паровых котлов из углеродистой стали с внутренним покрытием из каменноугольного пека и эпоксидной смолы (рис. 5.18). Температура воды 60 °С (электропроводность х = 100 мкСм/см). Резервуар после 10 лет эксплуатации без катодной защиты имел значительные поражения питтинговой коррозии. Площадь днища и стен равнялась 64 и 247 соответственно, что отвечало требуе- [c.269]

    Недостаток нержавеющих сталей — их склонность при некоторых определенных условиях к межкристаллитной коррозии, питтинговой коррозии и коррозионному растрескиванию. Эти опасные виды коррозионного разрушения происходят главным образом вследствие частичного (местного) нарушения пассивного состояния. Поэтому необходимо выяснить влияние анодной поля ризации на эти виды коррозии. Так как метод анодной защиты только начинает развиваться, то пока можно привести первые предварительные данные по этому вопросу. [c.121]

    На основе результатов исследований автора с сотрудниками, а также литературных данных рассматривается коррозия и электрохимия двухэлектродных систем применительно к контактной, щелевой и питтинговой коррозии. Излагается теория вопроса и механизм коррозионных процессов. Значительное место уделено описанию методов защиты металлов и сплавов, а также готовых конструкций и аппаратов от этих опасных видов коррозии. [c.10]


Смотреть страницы где упоминается термин Защита от питтинговой коррозии: [c.177]    [c.128]    [c.72]    [c.7]    [c.310]    [c.82]    [c.459]    [c.133]    [c.99]    [c.135]    [c.21]    [c.88]    [c.257]   
Смотреть главы в:

Структура коррозия металлов и сплавов -> Защита от питтинговой коррозии




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Коррозия питтинговая

Питтинговая коррозия методы защиты



© 2024 chem21.info Реклама на сайте