Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильность при хранении

    Парафиновые (алкановые) углеводороды, входящие в состав топлив, имеют хорошую химическую стабильность при хранении, низкие температуры плавления и кипения, наибольшую весовую теплоту сгорания и наименьшую плотность. Объемная теплота сгорания в связи с этим у парафинов меньше, чем у других групп углеводородов.  [c.11]

    Смесь озона с кислородом невзрывоопасна и стабильна при хранении. Эффективность жидкого кислорода как окислителя растет пропорционально содержанию в нем озона. Наличие в жидком кислороде озона, способного при разложении давать активный атомарный кислород, способствует увеличению скорости горения. [c.126]


    В связи с небольшим содержанием непредельных (3,5%, см. табл. 10) в легких каталитических газойлях они имеют достаточно высокую стабильность при хранении и вызывают малое отложение, нагара в двигателе и малое закоксовывание форсунок. По стабиль- ности легкий каталитический газойль приближается к дизельным топливам прямой перегонки. [c.69]

    Стабильность бензина зависит от сочетания таких факторов, как состав, метод обработки, металлические примеси и присутствие присадок. Для того, чтобы определять способность бензина сохранять свою стабильность при хранении, необходимо проводить соответствующие ускоренные испытания в процессе ого получения. Для этого был разработан метод, основанный на ускоряющем действии повышенных температур (до 100° С), и давлепии кислорода (до 6,8 ama) [4, 108]. [c.303]

    Поскольку температура кипения МТБЭ 55,2 °С, его добавление к бензину повышает октановые числа головной части и существенно увеличивает к. п. д. двигателей автомобилей при разгоне с низкой скоростью. МТБЭ смещивается с бензином в малых соотношениях и почти нерастворим в воде, не образует пероксидов, сохраняет стабильность при хранении. [c.177]

    Для предварительной лабораторной оценки стабильности при хранении были применены многие методы нагрев в стеклянных стаканах в течение 24 ч при 100° С [99], измерение количества осадка, полученного при горячей фильтрации, и измерение разбавления ксилолом, необходимого для предотвращения образования темного кольца на фильтровальной бумаге. Последние два метода устанавливают количество нерастворимого осадка, присутствующего в нефтетопливах во время определения. Ценность таких эмпирических методов вряд ли может быть значительна. [c.482]

    Содержание серы, % масс., не более. Зольность, % масс,, не более. ... Испытание на медной пластинке (Зч, 100 °С) Стабильность при хранении [c.55]

    Отсутствие двойных связей в основной цепи обеспечивает полимерам высокую стабильность при хранении без противостарителя, тепло-, кислородо- и погодостойкость и стойкость к действию УФ-лучей. Резины из акрилатных каучуков устойчивы также к многократным деформациям и разрастанию трещин и характеризуются высокой газонепроницаемостью [1]. Наличие по-групп обеспечивает вулканизатам высокую стойкость к маслам. [c.387]

    Метод определения индукционного периода используют главным образом для оценки химической стабильности бензинов, содержащих значительное количество олефинов, склонных к быстрому окислению при хранении (это-компоненты термического и каталитического крекинга). Современные автомобильные бензины, вырабатываемые в основном на базе компонентов каталитического риформинга, обладают, как правило, повышенной химической стабильностью при хранении, и их индукционный период составляет 25 ч и более. Поэтому при выпуске таких бензинов на НПЗ не определяют индукционный период, а продолжительность опыта ограничивают в пределах норм ГОСТ или ТУ, т.е. 600-12(Ю мин. Это обстоятельство явилось предпосылкой для разработки новых более информативных методов оценки химической стабильности бензинов. В нашей стране был разработан [58] и стандартизован (ГОСТ 22054-76) метод, условно названный метод СПО (по сумме продуктов окисления), пригодный для проведений в условиях рядовых лабораторий НПЗ и складов горючего. [c.57]


    Анализ перечня методов, входящих в комплекс, показывает, что ряд эксплуатационных свойств, например испаряемость, воспламеняемость, защитные свойства, электризуемость, стабильность при хранении, оцениваются одним-двумя методами. Для оценки же других эксплуатационных свойств, таких, как совместимость с материалами, используют до 13 методов. Подобное положение объясняется неравнозначностью эксплуатационных свойств по видам проявлений их влияния на работу авиационной техники, а также в некоторой степени стихийностью формирования перечня показателей качества топлив, регламентируемых стандартами на них. Так, показатель высоты некоптящего пламени был введен в требования на осветительные керосины и метод его определения отражает сгорание керосина в осветительных лампах. Однако этот показатель до сих пор сохранился в требованиях даже на те керосины, которые уже используются не в осветительных приборах, а в сверхзвуковых самолетах. [c.172]

    В результате процессов окисления при длительном хранении топлив в них накапливаются продукты окисления, конденсации и полимеризации углеводородных и гетероатомных соединений. Процессы, происходящие при хранении топлива для судовых ГТУ, аналогичны таковым при окислении дизельных топлив. Склонность к изменению качества или иначе стабильность при хранении топлив для судовых ГТУ оценивают по методу, заключающемуся в определении изменения кислотности и содержания высокомолекулярных продуктов при регламентированных условиях окисления топлива (см. гл. 4). [c.181]

    Разработанный комплекс квалификационных методов испытаний остаточных топлив для судовых котельных и газотурбинных установок в основном базируется на методах оценки качества топлив применительно к работе котельных установок. Указанным комплексом предусмотрена оценка следующих эксплуатационных свойств испаряемости, воспламеняемости и горючести, склонности к образованию отложений, совместимости с материалами, прокачиваемости, защитных свойств и стабильности при хранении топлив. [c.182]

    Не должно возникать затруднений при транспортировке, хранении и подаче топлива по системе питания в двигатель в любых климатических условиях. Это требование регламентирует такие качества топлива, как стабильность при хранении, содержание кор-розионно-агрессивных соединений, температуру застывания и помутнения, изменение вязкости с температурой, содержание механических примесей, склонность к потерям от испарения, растворимость воды и воздуха и др. [c.6]

    В заключение целесообразно вкратце остановиться на методах ускоренного старения топлив. Для сравнительной оценки стабильности прямогонных топлив в СССР и за рубежом используют различные методы [120, с. 90—94], сущность которых состоит в окислении топлив при 100—120°С в течение 10 ч и более в приборах различной конструкции с последующим определением в них образования нерастворимых продуктов, кислот, смол и других конечных продуктов окисления. Такие методы в определенной степени оправданы для прямогонных топлив, которые трудноокисляемы и для которых параметрами, характеризующими их стабильность при хранении, прежде всего являются нерастворимые и коррозионно-агрессивные продукты окисления. Однако эти методы вряд ли применимы для гидрогенизационных топлив. [c.252]

    Сопостав-ление величин индукционных периодов со стабильностью при хранении является значительно более сложным. Большое количество указаний, рассеянных по американским журналам, можно свести к тому, что величина индукционного периода в 4—6 час., указывает на" стабильность бензина в течение 0,5—1 года. [c.182]

    В соответствии с требованиями, обусловливаемыми назначением и условиями применения, реактивные топлива должны иметь высокие энергетические характеристики, обеспечивать надежную работу питающих систем двигателя, быть простыми в обращении, недорогими, стабильными при хранении и транспортировании. [c.185]

    Основные требования к авиационным бензинам достаточная детонационная стойкость на бедной и богатой топливо-воздушной смеси, оптимальней фракционный состав, низкая температура кристаллизации, небольшое содержание смолистых веществ, кислот и сернистых соединений, высокие теплота сгорания и стабильность при хранении. [c.430]

    На катализаторах с развитой поверхностью можно без снижения показателя стереорегулярности достичь повышения активности на 200—400% по сравнению с катализаторами, полученными вне реактора, и промотированными системами. Результаты полимеризации на типичных системах приведены в табл.14. Кроме повышенной эффективности в полимеризации эти катализаторы обладают и другими преимуществами. При осаждении таких катализаторов образуются сферические частицы с узким распределением по размерам 90% частиц типичного катализатора имеет диаметр от 25 до 35 мкм. Поскольку распределение частиц полимера отражает распределение частиц катализатора, обнаружено и узкое распределение по размерам частиц полимера. Полимер из однородных по размеру частиц, практически свободный от мелких и крупных фракций, гораздо проще перерабатывать. Теоретически можно исключить дорогостоящие стадии экструзии и формования таблеток, если получать сферы определенного размера. Однако, так как стабилизатор полпмера вводят в порошок перед экструдером, нужно разработать эффективный метод введения этих компопентов. Другой недостаток таких систем проявился на ранних стадиях разработки, когда обнаружилась их низкая стабильность при хранении. Хотя эти трудности, по-видимому, преодолены, применение катализаторов с развитой поверхностью остается ограниченным. Их используют там, где оборудование для приготовления катализатора находится рядом с аппаратами полимеризации. [c.214]


    Важными показателями, определяющими характеристики бензина в двигателе с искровым зажиганием, являются испаряемость, антидетонационные свойства, стабильность при хранении, совместимость компонентов и способность предотвращать отложения в системе впуска. [c.83]

    Стабильность при хранении — Ухудшение качества бензинов при хранении происходит, в основном, из-за окисления. Окисление ведет к образованию смол, лакообразных веществ, которые могут отлагаться в камере сгорания и впускной системе, ухудшая эффективность работы двигателя. В предельных случаях они могут вызвать пригорание поршневых колец и задир цилиндра. Во избежание подобных проблем, нефтеперерабатывающие заводы используют антиокислители и Деактиваторы металлов, которые уменьшают каталитическое влияние некоторых металлов на окисление. [c.86]

    Важными свойствами дизельного топлива являются испаряемость, теплотворность, воспламеняемость/цетановое число, вязкость, низкотемпературная текучесть, стабильность при хранении, совместимость компонентов и содержание серы. [c.87]

    Стабильность при хранении — Дизельные топлива при хранении подвергаются воздействию кислорода воздуха, что может вызвать выпадение смолистых веществ и, в случае судовых топлив, которые могут содержать остаточные компоненты, асфальтоподобных материалов. Для предотвращения этих явлений в топливо добавляют антиокислители и [c.89]

    JP-7, термостабильное) предписываются новые показатели и новые методы для контроля за стабильностью этих топлив при хранении. Так, в спецификации MIL—Т 38219 на топливо JP-7 предусмотрен специальный показатель стабильность при хранении , который контролируется искусственным старением топлива в течение 12 месяцев (в бочке) при 45°С. После старения топливо должно удовлетворять всем требованиям спецификации. Только тогда оно считается стабильным в условиях хранения. [c.91]

    Для ускоренного окисления используют стандартные приборы методов оценки термической стабильности (см. стр. 94), коррозионных свойств при повышенных температурах (см. стр. 98) или оценки стабильности бензинов. Предложен метод [58], основанный на изменении кислотности и оптической плотности топлива после окисления 150 мл образца в течение 40 ч (этапами по 8 ч) при 95 С в стеклянных стаканах (на 200 мл) с обратными холодильниками (тот же прибор, что в ГОСТ 20449—75 служит для определения коррозионных свойств топлив). Режим испытания подобран с учетом реальных пределов изменения указанных показателей при длительном (5—6 лет) хранении товарных реактивных топлив в складских условиях следовательно, достоинство метода — не требуется корреляции с реальными условиями и можно непосредственно прогнозировать сроки хранения. Однако для предварительной оценки стабильности при хранении современных сортов очишенных топлив он не предназначен. В то же время именно вопрос о стабильности при хранении очишенных топлив является наиболее актуальным, и ему уделяется много внимания [27, 58, 59]. По методам, служащим для оценки стабильности очищенных топлив, одну и ту же порцию топлива многократно окисляют при относительно умеренном нагреве (120°С), оценивая кинетику окисления [58] и степень конечных изменений окисленного топлива [57—60]. [c.91]

    Имеются и другие методы оценки стабильности при хранении очищенных топлив, например по индукционному периоду окисления — до определенной величины прироста какого-либо показателя. Так, по методу [61] окисляют 450 мл топлива при 120°С и после 4 ч окисления через каждый час определяют его кислотность. Продолжительность окисления, при которой прирост кислотности (от исходной) превышает 0,5 мг КОН/100 мл (с последующим ее ростом), считают за меру стабильности топлива. Для гидроочищенного топлива индукционный период по этому методу составляет 6—8 ч, для тех же топлив с антиокислителями — около 30 ч. [c.92]

    Сохранение стабильности при хранении дизельных топлив в нашей стране не создает затруднений, поскольку стандартные дизельные топлива СССР всегда были продуктами высокого качества, но оценка этого показателя важна при разработке новых сортов топлив. [c.111]

    В отличие от низших гомологов, например диацетилперекиси, пероксидиянтарная кислота достаточно стабильна при хранении при обычных температурах, нечувствительна к толчкам и трению, к воздействию минеральных кислот, что обеспечивает до известной степени безопасность работы с ней. Пероксидиянтарная кислота эффективна при инициировании радикальных реакций. При термическом распаде могут образоваться радикалы двух видов [21, с. 267]  [c.424]

    В процессе применения за последние годы указанный комплекс существенно развит. В результате-это наиболее полный по оценке эксплуатационных свойств топлив комплекс методов, которым предусмотрено определение всех (за исключением токсичности) эксплуатационных свойств реактивных топлив, в том числе испаряемости, воспламеняемости и горючести, склонности к образованию отложений, совместимости с материалами, прокачиваемости, противоизносных и защитных свойств, электризуе-мости и стабильности при хранении. [c.121]

    В современные термостабильные топлива добавляют антиокислительные присадки, в частности ионол. Эффективность таких присадок зависит от углеводородного состава топлива, а также от количества и состава примесей гетероатомных соединений в нем. В связи с этим в комплексе методов стабильность при хранении оценивают следующими показателями  [c.168]

    Комплексом методов квалификационных испьгганий дистиллятных топлив для судовых газотурбинных и котельных установок предусмотрена оценка следующих эксплуатационных свойств испаряемости, воспламеняемости и горючести, склонности к образованию отложений, совместимости с материалами, прокачиваемости, противоизносных и защитных свойств, а также стабильности при хранении. Указанный комплекс создан сравнительно недавно и находится в стадии развития. Дистиллятные топлива являются основным топливом в быстроходных дизельных двигателях, поэтому комплексы квалификационньгх методов испьггания топлив для дизельных двигателей, а также для судовых газотурбинных и котельных установок имеют довольно много одних и тех же показателей. [c.173]

    Максимальным октановым числом обладает полимеризат, полученный из бутиленовой фракции (димер) бензин — продукт полимеризации пропилена — имеет октановое число примерно на 10 единиц ниже (82—83 по моторному методу). В процессе полимеризации образуются не только димеры пропилена, но и олефины другой молекулярной массы. Полимер-бензин состоит почти нацело из олефинов, что обусловливает, с одной стороны, его невысокую химическую стабильность при хранении, а с другой — низкую приемистость к этиловой жидкости при добавке 3 мл ТЭС октановое число полимер-бензина повышается всего на 3—4 единицы. Недостатком полимер-бензина является тз1сже высокая чувствительность, свойственная олефинам и достигаюшая 14—15 единиц. Например, бензин, полученный полимеризацией пропилена, имеет рГ =0,7408, давление насыщенных паров 300 гПа его фракционный состав (°С) н. к. — 58 10% —109 50% —130, 30% —170, к. к. —216. Недостатки полимер-бензина и в не меньшей степени огромная потребность нефтехимической промышленности в олефинах, в частности в пропилене, заставили отказаться от дальнейшего использования процесса полимеризации. [c.80]

    Как видно из табл. 6.12,к основным показателяк качества авиационных бензинов относятся достаточная детонационная стойкость на бедной и богатой топливно-воздушной смеси, оптшлальный фракционный состав, ни кая температура кристаллизации, небольшое содеркание смолистых веществ, кислот к сернистых соедшент ,высокие тешюта сгорания и стабильность при хранении. [c.81]

    К стабильным при хранении прямогонным топливам антиокислительные присадки не добавляют, но присутствие в топливах антиокислителя снижает образование смол и кислот при температурах до 150°С (табл. 6.6). Так, ионол улучшает филь-труемость топлив при 150°С, но при 180°С практически не оказывает влияния [176, 201]. Показано )[204], что высокотемпературное осадкообразование в топливе ТС-1 снижается при концентрации наиболее эффективной антиокислительной присадки (в области исследованных температур) — бисфенола — при концентрации не менее 0,05% (масс.). [c.196]

    Для удовлетворения возрастающей потребности в ДТ все большее внимание уделяется использованию дистиллятных фракций вторичных процессов в составе дизельных топлив. Только процесс гидрокрекинга вакуумного дистиллята позволяет получать продукты, стабильные при хранении и в условиях применения. Это связано с отсутствием в них ненасыщенных углеводородов, а также заметного количества гете-роатомных соединений. Дистилляты остальных процессов, прежде всего термических и особенно замедленного коксования, обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и кислородсодержащих соединений (табл. 1.7). [c.24]

    Основные требования к маслам обеспечение запуска при низкой температуре, высокая термоокислительная стабильность, достаточные смазывающие свойства и стабильность при хранении, малая летучесть при высокой температуре, низкая корро-зионность. [c.447]

    Все большее значение приобретают различные присадки, повышающие эксплуатационные качества топлив и масел и их стабильность при хранении. Антиокислительные присадки к топливу и смазочным маслам, а также к полимерам (например, алкилиро-ванные фенолы) замедляют цепные реакции автоокисления. Дру-Г1 е присадки понижают температуру застывания масел (депрес-С( ры), улучшают их вязкостные свойства (вязкостные нрисадки), препятствуют коррозии металлов (ингибиторы коррозии) и т. д. Заслуживает упоминания и известный антидетонатор — тетраэтил-С1 инец, значительно иовышаюш,ий октановое число моторных топ-л гв. [c.14]

    Исходя из двух основных технологических функций - связующей и спекающей способности, - к пекам предъявляются следующие общие требования пек в зависимости от назначения должен обладать определенной температурой размягчения, плотно Ггью, вязкостью, коксовым остатком, удовлетворять потребителя хим1яческим составом, а также содержанием серы, зольных компонентов и влаги, быть стабильным при хранении, не токсичным и дешевым. При этом спекающая его способность в большей степени оценивается коксуемостью, коксовым остатком и содержанием а- и р-фракции, а связующая способность-преимущественно температурой размягчения, плотностью, вязкостью и содержанием а-фракций. Нефтеперерабатывающая промышленность располагает широкими сырьевыми ресурсами для производства пеков. В настоящее время во многих странах мира с развитой нефтепереработкой разрабатываются и интенсивно строятся новые процессы по производству нефтяных пеков термоконденсацией ТНО. [c.76]

    Коллоидная стабильность смазок лишь отчасти связана с синерезисом, поэтому эти свойства нельзя отождествлять. Чем выше загуш аюш ая способность загустителя и чем больше его в смазке, тем лучше связана в ней жидкая фаза. Высокой коллоидной стабильностью при хранении отличаются углеводородные смазки — гомогенные сплавы минеральных масел с твердыми углеводородами (церезином и парафином), распределенными в смазках в виде тонких, мономолекулярных слоев — кристаллов (см. рис. 12. 1, ж). мазки, загуш енные мылами, менее стабильны, так как структурный каркас не так плотен, а кристаллическая решетка мыл значительно менее масло- мка, чем кристаллическая решетка углеводородов механически задерживаемого масла в каркасе мыл относительно больше, а удерживается оно хуже. Кроме того, мыльные смазки больше подвержены процессам старения, следствием которых являются структурные изменения и связанное с ними выделение масла. [c.662]

    Топливо Т-2 готовится прямой перегонкой из малосернистых И сернистых нефтей и по содержанию серы равноценно топливу ТС-1. Топливо Т-2 характеризуется облегченным фракционным составом оно отличается от топлива Т-1 и ТС-1 тем, что в состав его, кроме лигроино-керосиновых фракций, входят также бензиновые фракции. Вследствие более высокого давления насыщенных паров топливо Т-2 в высотных условиях более склонно образовывать паровые пробки в топливонодводящей системе двпгателя, а потому имеет более узкую область применения, чем топлива Т-1 и ТС-1. Топлива Т-1, ТС-1 и Т-2, являясь продуктами прямой перегонки нефти, стабильны при хранении и при нормальных условиях могут храниться в течение нескольких лет без изменения. [c.42]

    Чтобы быть пригодными для использования изготовителями масел и их потребителями, присадки должны обладать свойствами, позволяющими работать с ними в обычном смесительном оборудовании, они должны быть стабильными при хранении, не иметь неприятного запаха и не быть токсичными по обычным промышленным стандартам. Поскольку многие присадки представляют собой высоковязкие или твердые вещества, их обычно поставляют в виде концентрированных растворов в масле-разбавителе (вьюокоиндексный дистиллят номер 100 или другое подобное масло). [c.35]

    Веббер [348] считает, что смазка, образец которой был выдержан в термостате при 70° в течение 7 суток и не выделил масла, будет стабильной при хранении по меньшей мере 12 месяцев. [c.727]

    Методы оценки стабильности при хранении авиационных бензинов служат главным образом для контроля за окислительным распадом тетраэтилсвинца (ТЭС)—основным химическим изменением, происходящим обычно в процессе хранения [46, 47]. Для этой цели имеются стандартные методы ГОСТ 6667—75, ASTM D 873, IP 138, DIN 51799 и др. Все они основаны на окислении бензина в регламентированных условиях и определении ин- [c.86]

    Для оценки стабильности при хранении реактивных топлив за рубежом используют описанный выше тaндapтный метод окисления в бомбах (ASTM D 873, IP 138, DIN 51799). Испытание проводят в таком же режиме, который используют для авиационных бензинов, но продолжительность окисления по требованиям всех спецификаций 16 ч. Топливо после окисления анализируют так же, как описано выше, — фильтруют через стеклянный пористый фильтр, присоединяют к фильтрату промывную жидкость после ополаскивания стаканчика растворителем, взвешивают высушенный фильтр с осадком и стаканчик и определяют растворимые смолы после испарения фильтрата. Если требуется, сообщают количество общего потенциального остатка (в мг/ЮО мл), который складывается из осадка и потенциальных смол. Напомним, что потенциальные смолы по этому методу представляют сумму растворимых и нерастворимых смол. В большей части спецификаций количество осадка по этому методу не нормируется, а на потенциальные смолы в некоторых спецификациях установлена норма— не более 14 мг/100 мл (для топлива JP-6 не более 10 мг/100 мл). [c.90]


Смотреть страницы где упоминается термин Стабильность при хранении: [c.75]    [c.89]    [c.507]    [c.532]    [c.254]    [c.29]    [c.455]   
Смотреть главы в:

Жидкие и твердые химические ракетные топлива -> Стабильность при хранении

Синтетические смазочные материалы и жидкости -> Стабильность при хранении

Моторные топлива -> Стабильность при хранении

Лакокрасочные материалы и покрытия теория и практика -> Стабильность при хранении




ПОИСК





Смотрите так же термины и статьи:

Влияние условий хранения на стабильность этилированных бензинов

Зависимость химической стабильности бензинов от условий хранения

Изменение коллоидной стабильности масел при их хранении и применении

Изменение термической стабильности топлив при хранении

Кристаллизация и стабильность при хранении

Присадки, повышающие стабильность топлив при хранении, транспортировке и применении в двигателях

Стабильность при хранении и коррозионные свойства дизельных топлив

Стабильность при хранении и эксплуатации

Стабильность при хранении универсальных трансмиссионных масел

Стабильность топлив в условиях хранения

Стабильность топлив при транспортировке и хранении



© 2025 chem21.info Реклама на сайте