Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактивные топлива хранение

    В реактивном топливе, если рассматривать его под микроскопом, можно обнаружить многочисленные твердые частички. В одном кубическом миллиметре топлива таких частиц содержится несколько тысяч штук, причем, чем меньше размер частиц, тем больше их количество. Достоверно установлено, что при транспортировке и хранении топлива как с доступом воздуха, так и в герметичных резервуарах количество частиц микрозагрязнений возрастает. Рост количества микрозагрязнений происходит не только за счет внешних загрязнений, но и за счет процессов, протекающих в топливе. Мелкие частицы (до 5 мк) могут находиться во взвешенном состоянии весьма длительное время, а частицы размерами более 5 мк постепенно переходят в отстой или оседают на стенах резервуара. Таким образом, при хранении в топливе непрерывно идут процессы накопления и выпадения в виде твердой фазы микрозагрязнений. [c.44]


    Относительно большое количество кислорода в составе микрозагрязнений свидетельствует о том, что их накопление в топливе и выделение в виде твердой фазы связано с процессами окисления. В свежем, незагрязненном, реактивном топливе количество микрозагрязнений составляет 0,5—1,5 г т. После длительного хранения в железных резервуарах это количество может достигнуть 3—5 г1т, а в особо неблагоприятных условиях (при интенсивном перемешивании в контакте с водой) — 10—20 г1т. Следовательно, после хранения топлива должны тщательно фильтроваться. [c.44]

    Несмотря на то что реактивные топлива представляют собой в нормальных условиях гомогенные жидкости, при нагревании, а также при длительном хранении в обьиных условиях в них может образовываться вторая фаза. Она представляет собой в основном продукты окисления, полимеризации и конденсации гетероатомных соединений. Эти образующиеся в топливе соединения, имеющие различное агрегатное состояние и размеры частиц, могут приводить к отрицательным явлениям при эксплуатации авиационной техники, в том числе забивать фильтры, нарушать работу топливо-регулирующей аппаратуры, форсунок, теплообменников, загрязнять топливные баки и др. [c.132]

    Прокачиваемость гомогенной жидкости определяется в основном ее вязкостью и в идеальном случае для указанной цели достаточно определять вязкость топлива в температурном диапазоне его применения. Однако реактивное топливо-технический продукт, содержащий разные примеси, попадающие в него в процессе производства, транспортирования, хранения и применения, которые могут существенно влиять на прокачиваемость топлива. Содержание этих примесей необходимо контролировать. [c.150]

    При эксплуатации авиационной техники большое внимание уделяют предотвращению загрязнения реактивных топлив от воды и механических примесей. Как правило, периодически сливают отстой из баков и расходных резервуаров, фильтруют и сепарируют топливо при заправке летательных аппаратов. Эти мероприятия в значительной степени предотвращают появление коррозии на деталях топливных систем независимо от защитных свойств топлива. Однако в практике встречается много случаев, когда реактивные топлива все же обводняются, например при хранении в резервуарах без приспособлений для слива отстоя или при длительном хранении (особенно во влажном климате) заправленных топливом летательных аппаратов. Наличие воды в реактивном топливе, длительно хранящемся в топливной системе летательных аппаратов, в технических средствах транспортирования, заправки и хранения приводит к электрохимической коррозии металла и вызывает связанные с этим отрицательные последствия в виде коррозионного поражения деталей указанных средств и нарушений вследствие этого их работы, а также загрязнения топлива продуктами коррозии. [c.165]


    Бесперебойное обеспечение топливом техники, особенно в периоды ее массового интенсивного использования, значительно упрощается при наличии необходимого количества запасов топлива. В наибольшей степени это относится к реактивным топливам, так как авиационная техника отличается от других транспортных средств сравнительно большими удельными расходами топлива. С экономической точки зрения рационально хранить топлива, освежая запасы как можно реже. В связи с этим большое практическое значение имеют допустимые сроки хранения реактивных топлив на складах. Эти сроки обусловлены стабильностью топлив при хранении. [c.168]

    В последнее время при.меняют топлива, получаемые смешением прямогонного и гидроочищенного компонентов. Этот технологический прием получения топлив используется, как правило, в тех случаях, когда в прямогонном компоненте сернистые соединения (например, меркаптаны) содержатся в количестве, превышающем требования ГОСТ на реактивное топливо ТС-1. При смешении прямогонного и гидроочищенного компонентов содержание природных ингибиторов в топливе уменьшается и может оказаться недостаточным для обеспечения надежной стабилизации топлив в условиях их эксплуатации и хранения. Поэтому минимальное содержание прямогонного компонента в смесевом топливе должно быть регламентировано так, чтобы в смеси емкость f[InH]o сильных ингибиторов была не менее 2,4-10 моль/л — емкости ингибиторов, вводимых в гидрогенизационные топлива. [c.189]

    Развитие микроорганизмов в топливе можно предотвратить, выполняя комплекс правил по сохранению топлива в чистоте. Необходимо своевременно удалять конденсационную воду й загрязнения путем фильтрования и отстаивания топлива, ограничивать доступ к нему кислорода воздуха. Многолетними наблюдениями за реактивными топливами в условиях хранения установлено [46], что развития микроорганизмов и, следовательно, коррозии металлов, можно избежать, покрывая внутренние стенки емкостей пленкой фурановой смолы, обладающей бактерицидными свойствами. [c.32]

    В соответствии с требованиями, обусловливаемыми назначением и условиями применения, реактивные топлива должны иметь высокие энергетические характеристики, обеспечивать надежную работу питающих систем двигателя, быть простыми в обращении, недорогими, стабильными при хранении и транспортировании. [c.185]

    Вопрос о присутствии и концентрации свободных спиртов в сырых нефтях до сих пор остается открытым, хотя в связанной форме они, несомненно, должны входить в состав сложных эфиров. Я. Б. Чертков, А. А. Полякова и сотр. в ряде работ указывали на наличие спиртов среди кислородсодержащих компонентов нефтепродуктов (дизельных топлив [651], реактивного топлива Т-5 [606, 666]) и концентратов сернистых соединений, выделенных из нефтяных фракций [664]. Спиртам из топлив приписаны различные структуры, в том числе включающие олефиновые двойные связи установлено, что содержание их растет во времени [651]. Эти факты отчетливо свидетельствуют, что обнаруженные соединения имеют вторичную природу и образуются за счет окисления углеводородов при хранении и, видимо, при получении нефтепродукта Ч [c.112]

    Антиокислители (ингибиторы окисления) предназначены для торможения процессов окисления углеводородов топлив при хранении и применении [I—5]. Их добавляют в количестве от тысячных до десятых долей процента в топлива всех основных типов — авиационные и автомобильные бензины, реактивные топлива, дизельные и котельные топлива (для последних они являются главным образом составной частью многокомпонентных присадок). [c.69]

    При лабораторном исследовании и опытном хранении реактивных топлив различного состава с антиокислителями [4, V. 2, сЬ. 17 31 56] оказалось, что многие из них удовлетворительно снижают смолообразование М-н-бутил- -аминофенол, К, М -ди-вгор-бутил-п-фени-лендиамин, бутилированный метоксифенол, 2,6-ди-трег-бутил-4-метилфенол, 2,2-метилен-бис (6-грег-бутил-и-кре-зол) и др. Их эффективность в замедлении образования твердой фазы при старении топлив неодинакова. Так, аминные антиокислители (М-н-бутил-п-аминофенол, Ы, Ы -ди-втор-бутил-п-фенилендиамин) не изменяют фильтруемости топлива, тогда как 2,6-ди-трег-бутил-4-метилфенол улучшает ее [31]. Поэтому спецификациями на реактивные топлива США и ряда других стран [34, 49, 50] разрешено добавлять к топливам всех сортов до 24 мг/л допущенных антиокислителей. [c.93]

    Относительно быстрые изменения наблюдаются и в топливах гидроочистки [42, 68, 69]. Добавление антиокислителя к этим топливам предохраняет их от таких изменений при хранении (рис. 16) [36, 60]. При этом различные антиокислители эффективно стабилизируют реактивные топлива гидроочистки или глубокого гидрирования в весьма незначительных концентрациях — менее 0,003% масс. (табл. 21, рис. 16, а и г) [65]. [c.94]

    В целом промышленные бензиновые антиокислители эффективны в реактивных топливах, хотя они больше замедляют в них окисление (увеличивают индукционный период), чем смолообразование [31, 61]. Антиокислители к реактивным топливам сохраняют и их первоначальные высокотемпературные свойства, которые, как показано многими исследованиями, ухудшаются относительно быстро [2, с. 550—556 4, v. 2, h. 17 36 58 60]. Эти антиокислители выполняют положительную роль как в неочищенных топливах прямой перегонки, так и в очищенных (рис. 18), замедляя ухудшение их термической стабильности при хранении. Следовательно, добавлять антиокислители к реактивным топливам всех сортов тем более целесообразно. [c.97]


    Совместимость с материалами. Реактивные топлива при их хранении, транспортировании и применении могут корродировать [c.55]

    Степень окисления гидроочищенного реактивного топлива при его хранении в течение 50 сут при 60 С иллюстрируется данными, приведенными в табл. 1.21 (числитель — для топлива без присадки, знаменатель — для топлива с добавкой 0,003 % Агидола). [c.68]

    Продукты окисления углеводородов, образующиеся в реактивном топливе ТС-1 после длительного хранения, обладают ингибирующими свойствами. Как видно из табл. 7, при их удалении скорость окисления топлива увеличивалась в 4,5, после повторного удаления - в 9,5, а после третьего уда- [c.28]

    Потери топлив при хранении в вертикальных наземных резервуарах достигают максимально следующих величин (кг/т в год) бензины - 2 - 3, реактивные топлива - 0,5 - 0,6, дизельные топлива - 0,10 - 0,12. В основном потери связаны с малым дыханием (выброс паров при суточном изменении температуры) и большим дыханием (налив и слив топлив) резервуаров. [c.77]

    Технический керосин и реактивные топлива Т-1 и ТС-1 имеют температуру вспышки 20—28 °С и относятся к легковоспламеняющимся нефтепродуктам реактивные топлива Т-5 и Т-8 и дизельные топлива всех марок имеют температуру вспышки более 45 °С и относятся к горючим нефтепродуктам. Рассматриваемые нефтепродукты обладают некоторыми характерными особенностями в изменении своих пожароопасных свойств, которые могут быть обусловлены изменением рабочей температуры хранения или появлением примеси более легкого компонента. [c.22]

    Армированное полимерное покрытие на основе ненасыщенной полиэфирной смолы ПН-1 или ПН-2 с такими армирующими материалами, как стеклянная ткань марки Т и штапельное стеклянное волокно, исследовалось в течение 15 лет на вертикальных резервуарах, предназначенных для хранения реактивного топлива. Установлено, что покрытие обладает высокой стойкостью к длительному воздействию, различных нефтепродуктов в интервале температур от —50 до + 50°С, к действию холодной и горячей воды и атмосферному воздействию. Степень вымывания и набухания покрытия в нефтепродуктах при 50 °С не превышает 0,5%, а в воде—1%. Качество нефтепродуктов при непрерывном контакте с покрытием в течение [c.82]

    Гарантийные сроки хранения нефтепродуктов установлены соответствующими ГОСТ и ТУ. Однако следует отметить, что не на все топлива, масла и специальные жидкости ГОСТ установлены гарантийные сроки хранения. Нет их, например, на автомобильные бензины, реактивные топлива ТС4, Т-1, Т-2, Т-6, Т-8В, многие масла и специальные жидкости (табл. 5). На основании многолетнего опыта хранения нефтепродуктов установлены оптимальные сроки хранения в различных климатических зонах. [c.15]

    Наименьшую испаряемость имеют смазочные масла. Испаряемость масел в условиях хранения ничтожна и уменьшается с увеличением их вязкости. Таким образом, по склонности к испарению и, следовательно, к изменению качества вследствие процессов испарения нефтепродукты располагаются в следующий убывающий ряд бензины -> реактивные топлива -> дизельные топлива газотурбинные топлива котельные топлива масла для реактивных двигателей-> автомобильные масла- дизельные масла масла для поршневых авиационных двигателей. [c.20]

    Автор исследовал кинетику накопления продуктов коррозии в бензинах А-72, Б-70, реактивных топливах ТС-1 и Т-1, дизельных топливах ДА и ДС при длительном хранении (табл. 49). Топлива были заложены в стальных резервуарах на 5 лет. Через каждые 6 мес. отбирались пробы топлива на анализ, а также пробы загрязнений со стенок и дна емкостей, из которых составлялась средняя проба. Микрозагрязнения во взвешенном состоянии в среде топлива определяли методом светорассеяния. Топлива перед хранением тщательно фильтровали через фильтр 10 мкм. В топливах (которые тщательно охраняли от внешнего загрязнения) постепенно накапливается твердая фаза в виде соединений с большим содержанием железа. Содержание железа в составе золы возрастает при хранении очень сильно после пятилетнего хранения оно достигает 40—50 %. [c.122]

    Точность экстраполяции можно повысить различными методами. Надежным является, например, метод, по которому экстраполируемую часть, общей кривой корректируют с учетом экспериментальных данных по изменению качества нефтепродуктов — аналогов прогнозируемого объекта, опережающих его по длительности хранения. Другой прием заключается в комплексном использовании статистических и информационных данных. Рассмотрим этот метод на обобщенном примере анализа тенденции увеличения смолистых веществ в реактивном топливе РТ при хранении. Топливо РТ было заложено на хранение в южной, средней и северной климатических зонах в наземных резервуарах с коэффициентом заполнения 0,87. Топливо хранили 3 года, через каждые 6 мес. определяли содержание смолистых веществ. Тенденция накопления смол представлена на рис. 34, Б. К моменту начала опытного хранения топлива РТ имелся опыт хранения топлива Т-1 в аналогичных условиях в течение 10 лет. Сопоставление физико-химических свойств топлив по предельным значениям ГОСТ  [c.158]

    Среди моторных топлив к реактивным топливам предъявляются более повышенные требования к качеству - подвергают более тщательному контролю технологию как при производстве, так и транспортировке, хранении и применении. [c.146]

    Реактивные топлива Т-1, ТС-1 и Т-2, полученные прямой перегонкой нефти, по сравнению с топливами, содержащими крекинг-компоненты, обладают высокой химической стабильностью в условиях длительного хранения. В процессе хранения продукты окисления в этих топливах накапливаются медленно. В результате этого происходит некоторое увеличение фактических смол и кислотности, а е некоторых случаях ухудшается термоокислительная стабильность топлив. В резервуарах небольшой емкости (25—50 м ) фактические смолы через 5 лет хранения достигают установленной нормы. В больших резервуарах, емкостью 5000 м , топлива Т-1 и ТС-1, имеющие достаточный запас качества, удовлетворительно хранятся в течение 6—7 лет и более 88, 89]. Значительные трудности в этом вопросе возникают в том случае, если в топливо вводятся малостабильные компоненты термического крекинга, как это сделано для опытного топлива Т-4 [24. 901. [c.27]

    Присутствующие в реактивных топливах продукты окисления по разному влияют на стабильность топлив при хранении. Для топлив Т-1, ТС-1 и Т-2 удаление продуктов окисления приводит, как правило, к повышению, для топлива Т-4 наоборот — к резкому снижению стабильности при хранении. Оксикислоты и кислые смолы вызывают быстрое окисление топлив типа Т-4, что сопровождается увеличением фактических смол и кислотности. Нейтральные смолы не оказывают заметного влияния на окисляе-мость топлив. Фенольные соединения несколько тормозят окисление топлив [24, 91]. [c.29]

    Подавляющее большинство современных самолетов и вертолетов оснащено газотурбинными двигателями. Они независимо от используемого принципа тяги (за счет работы воздушного вш1та или истечения газов из сопла) работают на топливах для реактивных двигателей. Реактивные топлива представляют собой дистиллятные фракции нефти, вьпсипающие с учетом топлив различных марок в пределах 60-320 °С. Характерной особенностью применения топлив на авиационной технике являются повышенные требования к безотказности ее работы. В связи с этим реактивные топлива подвергают более тщательному контролю по технологии производства и качеству при выработке, транспортировании, хранении и применении. [c.121]

    Реактивные топлива Т-2, ТС-1, Т-1, содержащие прямогонные компоненты, не подвергнутые гидрогенизации, умеренно термостабильны и имеют, как правило, достаточно длительные допустимые сроки хранения-5 лет и более. Высокотермостабильные же топлива РТ, Т-8 и Т-6 представляют собой углеводородные фракции, весьма глубоко очищенные от гетероатомных соединений. Но в результате удаления из них при производстве естественных антиокислителей они обладают повьпценной окис-ляемостью, что приводит к усилению агрессивного воздействия на резину, а также к накоплению в них продуктов окисления и быстрому ухудшению термической стабильности. Поэтому допустимый срок хранения указанных топлив без антиокислительных присадок в ряде случаев значительно меньше, чем сроки хранения топлив Т-1, ТС-1 и Т-1. [c.168]

    Определение стабильности при длительном хранении гидроочищенных топлив. Химическая стабильность определяется по методу ЦИАМ. Прогнозирование допустимых сроков хранения топлив, стабилизированных антиокислительными присадками, основано на измерении скорости образования свободных радикалов при окислении кислородом воздуха реактивного топлива, не содержащего присадку ионол, и определении по Wi допустимого срока хранения этого же топлива с ионолом при контакте его с воздухом. [c.203]

    Вследствие того что этилцеллозольв лучше растворяется в воде чем в топливах, прп контакте топлива с водой (например,при транспортировке топлива) он может вымываться из топлива. Поэтому его добавляют в топлива не на нефтеперерабатывающих заводах, а непосредственно на местах применения. Этилцеллозольв не вызывает накопления влаги в топливе при его хранении (табл. о. 80). В СССР этилцеллозольв применяется, начиная с 1955— 1956 гг., в авиацпонных топливах (в реактивных топливах и авиационных бензинах) [93]. [c.338]

    Методы искусственного старения в лабораторном термостате [27, 46, 59] заключаются в хранении 0,5—1 л топлива при 45— 50 °С и периодическом контроле степени окисления топлива по тем или иным показателям. Топливо помещают в темную склянку, закрытую пробкой с капилляром, термостат регулярно проветривают. Как правило, нагрев термостата чередуется с охлаждением (на ночь его выключают). В этих условиях заметные изменения в товарных неочищенных реактивных топливах наблюдаются через 7—10 месяцев, в некоторых очищенных топливах они появля- [c.92]

    Реактивные топлива, получаемые с помощью гидрогениза-ционных процессов, склонны к окислению значительно больше, чем прямогонные П —11]. Образующиеся при этом продукты, как правило, хорошо растворимы в топливе. Такие топлива все шире применяются в авиационной технике. Поэтому целесообразно более подробно изучить характер изменения их свойств при окислении, происходящем при длительном хранении и при использовании на сверхзвуковых самолетах типа ТУ-144 или Конкорд , т. е. при нагреве до относительно высоких температур (150—180° С) в течение нескольких часов. [c.3]

    Таким образом, повышенная склонность к окислению топлив, полученных гидрогенизационными процессами, приводящая к образованию нерастворимых в топливе смолистых продуктов, и наличие в топливе высокодисперсных механических примесей с размером частиц <15 мк обусловливают ухудшение термической стабильности таких топлив, ошределяемой в динамических условиях по ГОСТ 17751—72. Для надежного применения топлив, полученных гидрогенизационными процессами, необходимо вводить в них антиокислители, которые позволяют сохранить их качество п при длительном хранении. Следует отметить, что зарубежные спецификации предусматривают введение антиокислителей в реактивные топлива 2]. [c.30]

    Бензиновая фракция сланцевых смол, выход которой невысок, должна быть гидроочищена до содержания азота не более 0,5 мл/м во избежание деактивации катализатора риформинга, которому она подвергается для получения компонента высокооктанового бензина. При производстве реактивного и дизельного топлив гидроочистка соответствующих фракций смолы необходима с целью удаления из них смолообразующих соединений и других примесей и обеспечения стабильности готовых продуктов при длительном хранении. Содержание азота при этом снижается до 10 мл/м расход водорода на гидроочистку средних дистиллятов составляет около 180 м в расчете на 1 м продукта. Максимальное содержание азота в газойле не должно превышать 0,3% (масс.). После гидроочистки он может служить хорошим сырьем каталитического крекинга, так как в нем содержится много легкокрекирующихся парафинов и нафтенов, а также сырьем гидрокрекинга с получением бензина и реактивного топлива. В целом затраты на переработку сланцевой смолы в моторные топлива примерно в 2 раза выше, чем при получении этих топлив из природной нефти. [c.113]

    Склонность к образованию отложений. Огложения в реактивных топливах — это продукты различного характера, образующиеся в результате окислительных процессов, которые протекают в топливе при разных температурах. В реактивных топливах практически нет непредельных углеводородов, и склонность их к окислению при температуре о1д)ужающей среды, имеющей место при длительном хранении топлив, или их химическая стабильность обусловливается степенью окисления углеводородов других классов, а также наличием в них гетероатомных соединений (серу-, кислород- и азотсодержащих). Склонность топлив к окислению при повышенных температурах с образованием таких продуктов, прежде всего осадков, характеризуется термоокислительной стабильностью.  [c.54]

    Вследствие довольно высокой температуры вспышки осветительных керосинов и дизельных топлив, обычно превышающих нормальную температуру хранения, газовое пространство резервуаров с этими нефтепродуктами обычно является пожаровзрывобезопасным, так как концентрация их насыщенных паров не до- стигает нижнего предела воспламенения. При нормальных температурах хранения в жаркие летние дни могут быть опасными реактивное топливо и тракторный керосин, у которых в результа- [c.64]

    Больше всего растворяется воды в бензинах. В реактивных топливах растворимость воды меньше, и еще меньше она в дизельных, тяжелых котельных топливах и маслах. Например, содержание воды в масле МС-20 из раздаточного крана автомаслозаправщика [33] при заправке самолетов составляет 0,0015—0,007 %. Содержание воды в нефтепродуктах мало зависит от зоны их хранения (табл. 53). [c.129]

    Химическая стабильность реактивных топлив. Поскольку топлива для ВРД готовят преимущественно из дистиллятных прямогонных фракций, они практически не содержат алкенов, имеют низкие йодные числа (не выше 3,5 г 12/100 мл) и характеризуются достаточно высокой химической стабильностью. В условиях хранения окислительные процессы в таких топливах идут очень медленно. Гидроочищенные реактивные топлива, хотя в них удалены гетеросоединения, тем не менее легче окисляются кислородом воздуха ввиду удаления природных антиокислителей и образуют смолоподобные продукты нейтрального и кислотного характера. Для повышения химической стабильности гидроочищенных топлив добавляют антиокис-лительные присадки (типа ионола). Химическая стабильность реактивных топлив оценивается по йодным числам и содержанию фактических смол. [c.148]

    Исследование продуктов окисления, образующихся в реактивных топливах при хранении, показало, что о и представляют собой сложную смесь спиртов, кислот, оксикислот, эфиров, соединений с карбонильной группой, окисленных сера- и азоторгани- [c.27]

    Основное направление окисления малостабильных олефиноароматических углеводородов в реактивных топливах при их хранении может быть цредставлено в следующей последовательности  [c.29]

    Необходимость повышения стабильности в условиях хранения относится прежде всего к топливам типа Т-4 и к зарубежным топливам Jp-4, DERD-2486, Air-3407 и HATO-F-42, в которые в военное время может добавляться до 30% компонентов термического крекинга. Обш,епринятым способом повышения стабильности топлив подобного типа в условиях их хранения является добавка высокоэффективных антиокислительных присадок. Для стабилизации реактивных топлив предложены антиокислитель-ные присадки аминного и фенольного типа, к числу которых относятся N,N — диизопропил- и N,N — ди-вгор-бутил-п-фени-леидиамины 2,6-ди-трет-бутил-4-метилфенол 2,4-диметил-6-грег-бутилфенол 2,6-ди-7 уОег-бутилфенол и смесь третичных бутилфе-нолов. Добавляются эти присадки в реактивные топлива в количестве до 0,008% [32]. [c.30]

    Реактивные топлива типа широкой фракции за рубежом могут содержать в своем составе компоненты, которые подвергаются очистке от активных сернистых соединений с помощью солей меди. Поэтому в этих топливах после очистки может оставаться до 0,35—0,70 мг л солей меди, присутствие которых резко снижает стабильность топлив при их хранении. Кроме того, в процессе применения реактивных топлив они могут соприкасаться с оборудованием, имеющим детали, изготовленные из сплавов меди. Для снижения каталитического действия меди за рубежом предусматривается добавление в топлива JP-4 и JP-5 металло-деактиваторных присадок Ы,К-дисалицилиден-2,2-пропандиамина или ди aлицилидeн-N-мeтилдипpoпилeнтpиaминa в количестве до 0,002% [92]. [c.30]

    Микрозагрязнення в реактивных топливах накапливаются не только за счет внешних источников загрязнения, но и образуются в самом топливе в процессе его хранения, транспортировки и применения на самолетах. Исследования показали, что даже в тщательно профильтрованном реактивном топливе при его хранении в герметичной таре уже через некоторое время образуются осадки, являющиеся, результатом коагуляции микрозагрязнений [108]. [c.33]


Смотреть страницы где упоминается термин Реактивные топлива хранение: [c.48]    [c.63]    [c.394]    [c.150]    [c.7]    [c.77]   
Нефтепродукты свойства, качество, применение (1966) -- [ c.127 ]

Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.34 , c.39 ]

Товарные нефтепродукты (1978) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Топливо реактивное



© 2024 chem21.info Реклама на сайте