Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение теллура в свинце

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Ход анализа. Навеску 2—5 г материала, содержащего теллур, сплавляют с 5-кратным количеством перекиси натрия в никелевом тигле. По охлаждении выщелачивают водой, добавляют соляную кислоту и кипятят для удаления выделившегося хлора. Затем восстанавливают теллур (присутствующий в растворе в виде шестивалентного) до элементарного гипофосфитом кальция. При этом в осадок выпадают вместе с теллуром селен, золото и мышьяк. Осадок отфильтровывают, промывают горячей разбавленной соляной кислотой, переносят в стакан и кипятят с концентрированной азотной кислотой до полного растворения всех металлов (кроме золота) добавляют 20 мл 18 н. серной кислоты, выпаривают до дыма,. охлаждают, разбавляют водой, добавляют отмеренный избыток раствора бихромата калия (I мг хрома в I м/1), дают постоять 30 мин и титруют избыток бихромата солью Мора при -1-1,15 в (Нас. КЭ) с платиновым электродом. Определению теллура не мешают селен, медь, свинец, серебро, висмут, сурьма, мышьяк и олово. [c.314]


    Аналогичные методики использовались и для обнаружения в воде очень низких (1 пг) содержаний олова, свинца и ртути [61, 63]. При газохроматографическом определении химических форм нахождения олова в морской воде (моно-, ди- и трифенилолово, моно-, ди- и трибутилолово и неорганические соединения олова) МОС восстанавливают до соответствующих гидридов, продувают воду гелием высокой чистоты и улавливают гидриды на силанизированном хромосорбе GAW [64]. Предел обнаружения равен 0,02—10 мг/л. Определение летучих МОС тяжелых металлов (сурьма, висмут, мышьяк, ртуть, теллур, свинец и олово) в природных и антропогенных экологических пробах методом ГХ/МС/ИНП чаще всего осуществляется после превращения их в гидриды или алкильные соединения [66]. [c.583]

    Определению селена не мешают теллур, свинец до 1 мг, медь до 3 мг, железо до 0,4 мг, марганец до 0,4 мг, хром (Сг +) до 0,3 мг. [c.296]

    Определению не мешают кальций, стронций, барий, магний, свинец, бериллий, марганец, никель, хром(III), алюминий, уран, висмут, лантан, мышьяк, сурьма, теллур, а также нитрат-, сульфат-, хлорид-, фторид-, бромид-, сульфит-, тиосульфат-, тетраборат-, оксалат-, цитрат- и тартрат-ионы. [c.164]

    При изучении извлечения теллура из солянокислого раствора в присутствии родамина С было показано , что наибольшая полнота извлечения достигается из 5—7% -ной соляной кислоты смесью бензола с эфиром в соотношении 2 1. Чувствительность реакции равна 0,5 мкг в 1 мл экстракта. В условиях, выбранных для определения теллура, галлий флуоресцирует сильнее теллура сурьма (III) и олово (II)—почти так же, как и теллур молибден, олово (IV) и рений—примерно в 10 раз слабее, а индий, таллий, ртуть и серебро—еш,е слабее. Некоторое свечение при содержании в. 5—10 -иг обнаруживают также свинец, селен, торий и цинк. Гашение флуоресценции теллура вызывают железо и ионы-окисли-тели—церий (IV), золото, ванадат и хромат. [c.364]

    Si при анализе легких сплавов пробу нагревают в потоке хлора при 750 °С [5.1771]. Хлорирование применяют для отделения сурьмы и олова при анализе баббита 15.1772], медь, свинец, цинк остаются в виде нелетучих хлоридов. Хлорированием можно выделить олово из сплавов Zr—Sn [5.1773]. Этот метод используется при определении теллура в полупроводниковых материалах [5.1774]. [c.258]

    Металлический свинец, получающийся при шахтной плавке, содержит примеси медь, олово, мышьяк, сурьму, золото серебро и др. Эти примеси удаляются путем последовательной его очистки (рафинирования). Процессы очистки в основном контролируются спектральным методом. Ниже мы излагаем методику химического метода определения теллура в свинце, представляющую интерес и для других продуктов с подобным сочетанием компонентов. [c.87]


    Абсорбциометрическое определение теллура в сплавах теллур — свинец. [c.350]

    Теллур, марганец и железо(III) (до 0.4 мг) медь (до 3 мг) и свинец (до 1 мг) не мешают определению [c.149]

    Теллур, марганец и железо до 0,4 мг, хром (III) до 0,05 мг, хром (VI) до 0,3 мг, свинец до 1 мг, медь до 3 мг, кобальт и никель до 0,02 мг не мешают определению. [c.261]

    Основное преимущество ДМК как восстановителя заключается в устранении влияния галогенов на результаты анализа. Но, как и при использовании хлорида олова, влияние сульфидов остается. Так, наличие в растворе 20 мкг 3 в виде сульфида натрия снижает абсорбцию на 50%, а 100 мкг практически полностью подавляет сигнал. Ионы теллура, селена, золота и серебра при содержании 0,6 —500 мкг снижают сигнал на 25—80%. Это объясняется тем, что перечисленные металлы восстанавливаются до элементного состояния и связывают свободную ртуть в виде амальгамы и теллурида (селенида). Щелочные и щелочноземельные металлы, цинк, алюминий, свинец, никель, кобальт, марганец, кадмий и др. не мешают анализу. Описанный метод успешно может быть использован для определения ртути в коксах и ископаемых углях. [c.237]

    Рентгеноспектральный метод анализа по эмиссионным спектрам элементов чаще всего используется для количественного определения состава объектов, трудно поддающихся химическому разделению и анализу. Обычно определяется содержание таких элементов, как ниобий, тантал, вольфрам, рений, молибден, цирконий, гафний, стронций, торий, уран, иттрий, свинец, титан, ванадий и некоторых других тяжелых элементов. В редких случаях этот метод применялся для количественного определения кремния, галлия, германия, теллура и селена. Так как используемые во всех этих случаях приемы анализа очень близки и отличаются лишь незначительными деталями, они будут проиллюстрированы в настоящем параграфе в основном на примере количественного определения ниобия и тантала и отчасти урана и тория. [c.191]

    Высокой чувствительности определения сурьмы можно ожидать при испарении пробы в атмосфере аргона, обеспечивающего низкую температуру электрода и высокую температуру плазмы дуги. Наиболее удобными элементами сравнения для определения сурьмы являются цинк и кадмий, удовлетворительные результаты дают свинец и висмут. Хорошие результаты получают при использовании теллура. В качестве буфера для обеспечения наибольшей чувствительности желательны элементы с высоким потенциалом ионизации. [c.267]

    Определению индия в пыли производственных помещений мешают кадмий, трехвалентное железо, свинец, олово, медь, сурьма, селен, теллур, мышьяк и висмут. При совместном присутствии индия и кадмия при 2 0,60 В (н. к. э.) получается суммарная волна. Чтобы получить раздельные волны индия при 1/2= [c.366]

    Так, например, медь может полностью вытеснять тал-лий(1), никель, висмут, свинец(П), кадмий, цинк, сурь-му(1П), теллур(1У) и марганец из их диэтилдитиокарбаматов, в результате чего оказывается возможным косвенное фотометрическое определение зтих металлов [905—907, 12101. [c.232]

    Если смочить фильтр жидкостью, подлежащей анализу, и сжечь его в высокочастотной искре, можно с полной уверенностью расчитывать на чувствительность определения от 10 до 10 в металлах медь, серебро, ртуть, марганец, висмут, свинец и золото. Наоборот, предел доказуемости мышьяка и теллура этим методом лежит лишь несколько ниже 10 г, т. е. количеств того же порядка, что и при непосредственном анализе раствора с конденсированной искрой. [c.59]

    Погрешности анализа, обусловленные взаимодействием золы с материалом тигля, можно избежать выбором подходящего материала тигля и озолением при возможно низкой температуре. Приводимые в литературе рекомендации в ряде случаев противоречивы. При определении щелочных и щелочноземельных металлов следует использовать платиновые тигли [5.37, 5.38], однако, если в золе присутствуют легко восстанавливаемые элементы (благородные металлы, медь, свинец и теллур) их применять не рекомендуется. Очень часто используют кварцевые тигли, но они не пригодны при определении калия [5.39], кальция и магния [5.40]. Тигли из родия рекомендованы для озоления проб, остаток которых содержит фосфаты [5.41 ]. Фарфоровые тигли применяют реже, чем кварцевые, поскольку возможно взаимодействие между компонентами золы и глазурью. [c.135]

    Далеко не все элементы, входящие в эти группы, могут быть определены методом ААА с приемлемыми для практических целей пределами обнаружения. К последним относятся из IV группы — кремний, титан, олово и свинец из V — ванадий, сурьма и висмут из VI — хром, селен, теллур и молибден. Кроме того, можно определять мышьяк и селен гидридным методом (см. разд. 3.8). Предложены также косвенные методики определения серы, основанные на предварительном окислении содержащейся в анализируемых объектах серы до сульфата, последующем его осаждении барием и определении серы по разности после определения содержания бария в растворе методом ААА. Примеры таких методик даны в работах [82, 83], а также монографии В. Прайса [11, с. 297]. [c.190]

    Большая часть металлов не влияет на стабильность силиконовых смазочных веществ. Исключение составляют свинец, селен и теллур, которые действуют как деполимеризующие катализаторы 2 Медь и алюминий в определенных условиях действуют как ингибиторы окисления. [c.221]


    Определение с тиомочевиной Несколько большие количества висмута (от ОД до 4 мг) могут быть определены фотометрически в разбавленном азотнокислом растворе добавлением тиомочевины и измерением свето-ногдощения образовавшегося окрашенного в желтый цвет комплексного соединения при длине волны света 425 ммк. Сурьма, палладий, осмий и рутений также образуют с тиомочевиной в кислом растворе окрашенные комплексные соединения- . Добавление фтористоводородной кислоты предупреждает образование окрашенного соединения сурьмы серебро, ртуть, свинец, медь, кадмий и цинк образуют белые осадки, когда присутствуют в значительных количества если же содержание этих элементов невелико, то ни осадков, ни окрашивания раствора не получается. Железо, при содержании его, превышаюш ем 0,1 мг в 50 мл, должно быть удалено или восстановлено до двухвалентного состояния . Селен и теллур мешают определению [c.278]

    Определению рения на фоне 2 н. раствора сульфита натрия мешают молибден, вольфрам, медь, цинк, свинец, кадмий, олово, ванадий, никель, селен и теллур, которые восстанавливаются при потенциалах, близких к потенциалу восстановления рения. В ходе анализа предусмотрено отделение рения от указанных выше элементов спеканием навески исходного материала с окисью кальция. [c.57]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]

    При определении содержаний теллура выше 0,01% (разбавление цинковым буфером) измеряют также почернение линии висмута — 2400,88 А или кадмия 2329,28 А и строят градуировочные графики по двум парам аналитических линий —теллур 2385,76 А—свинец 2399,58 А и теллур [c.594]

    Загрязняют осадок свинец, ртуть, благородные металлы , теллур и селен, если последний присутствует в значительном количестве, особенно в солянокислом растворе. Соосаждение некоторых из этих элементов не всегда обязательно приносит вред свинец, например, не мешает в том случае, когда определение заканчивается электролитическим методом. Если после осаждения роданида меди (I) определение заканчивают иодометрическим методом, то захват осадком свинца, ртути или серебра не мешает. [c.264]

    М H I, свинца (II)—горячей водой. Полярографическое определение теллура (IV) вели на фоне 0,1 М NaOH, олово (IV) и свинец (II) определяли непосредственно в элюатах потенциалы полуволн элементов на этих фонах при использовании ртутного капельного электрода равны —1,22, —0,45 и —0,50 в (относительно насыщеного каломельного электрода), соответственно. Содержание теллура, олова и свинца определяли методом добавок (высоты полярографических волн изученных элементов пропорциональны их концентрации). В аналогичных условиях проводили анализ монокристаллов (Pbi ,Snx)i-j/Tey. [c.33]

    Высокочастотные безэлектродные лампы. При определении таких элементов, как мышьяк, висмут, сурьма, селен, теллур, таллий, свинец, хорошие результаты были получены при использовании безэлектродных ламп с высокочастотным (ВЧ) возбуждением. Спектральные высокочастотные безэлектродные лампы представляют собой сферические (рис. 8.6, а, б) или цилиндрические (рис. 8.6, в, г) баллоны из стекла или кварца, нанолненные инертным -азом при низком давлении. В баллон, снабженный отростком, помещается небольшое количество чистого металла либо его соли. Имея более низкую температуру, чем остальной баллон, отросток стабилизирует раснределение температуры в ламие и устраняет перемещение металла по внутренней ее но-верхности, уменьшая релаксационные колебания интенсивности излучения. Копструкцин, изображенные на рис. 8.6, а, б, предназначены для применения в ВЧ-генераторах (20—200 МГц), а конструкции, представленные на рис. 8.6, в, г, — в СВЧ-геиераторах [c.146]

    Для выращивш1ия качественных кристаллов или направленных поликристаллов термоэлектрических материалов необходимо иметь достаточно чистые исходные компоненты - висмут, сурьму, селен, теллур. Если селен выпускают достаточно чистым, то с теллуром, сурьмой и висмутом возникают определенные сложности, особенно с теллуром. Одни производители предпочитают более грязный, но относительно дешевый теллур, другие - более чистый, который стоит намного дороже. Поэтому некоторые производители самостоятельно производят доочистку исходного теллура. Возгонка является эффективным способом очистки Те от многих примесей. По такому же принципу очищают и сурьму. Возгонка 8Ь, как известно, является малоэффективной при очистке от свинца и мышьяка. И если мышьяк как примесь практически не оказывает влияния на изменение свойств материала, то свинец является донором. Поэтому процесс возгонки 8Ь должен быть организован таким образом, чтобы можно было использовать небольшие различия в физических свойствах 8Ь, Аз и РЬ. Очистка висмута обычно ограничивается стандартной процедурой, хорошо описанной в научно-технической литературе, - фильтрацией расплава В1 для очистки от оксидов, которые всегда присутствуют в металлическом висмуте. [c.77]

    По мере увеличения расхода (скорости всасывания) анализируемого раствора абсорбционный оигнал усиливается, но после максимума снижается. Положение максимума зависит от конструкции и состояния распылительной системы, свойств анализируемого вещества, применяемого раство рителя и др. Но во всех случаях с увеличением объема порций распыляемого образца максимум смещается в область больших расходов. Так, при определении в водных растворах И элементов методом импульсного распыления дозами 20, 50 и 100 мкл максимальный абсорбционный сигнал наблюдается нри расходах примерно 2,5 3,8 и 6,0 мл/мин. При распылении водных растворов порциями по 40 мкл достигнуты следующие абсолютные пределы обнаружения (в нг) цинк и кадмий—1 серебро — 2 медь — 3 кобальт — 4 железо и никель — 8 свинец и теллур— 12 в1исмут и индий — 24. Абсолютный предел обнаружения ниже, чем в методе непрерыиного распыления, примерно в [c.55]

    Методы, примен5Гемые для отделения золота от большинства элементов, основаны на том, что его легко восстановить до металла Применяя подходящие колаиекторы, золото легко осадить такими восстановителями, как хлорид олова (II), цинк и магний В качестве коллектора применяют ртуть, хлорид ртути (I), свинец и теллур. Особенно пригоден теллур осадок теллура, получаемый при восстановлении хлоридом олова (II), содержит золото в виде теллурида. Осадок можно растворить в царской водке переходящий в раствор теллур не мешает последующему определению золота посредством роданина. Если же золото определяют посредством хлорида олова (II), то теллур удаляют, например, сильным прокаливанием, причем двуокись теллура улетучивается. Указания, как проводить соосаждение с теллуром, будут даны позже — при описании роданинового метода определения золота . С помощью этого метода золото можно отделить от больших количеств железа, меди, свинца и других металлов (см. ниже табл. 26). Палладий, платина, ртуть и частично серебро соосаждаются вместе с золотом. Малые количества других металлов могут также попасть в осадок, однако обычно они не мешают анализу, так как коллектор (теллур) берут в очень небольших количествах, и поэтому абсолютные количества металлов, увлекаемые в осадок, так малы, что ими можно пренебречь. [c.231]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    В 5 н. растворе HjS04 lOO io-Hoe восстановление 1 ммоль германия достигается после Q мин кипячения с гипофссфитом при содержании фосфата в растворе не ниже 1,75 М. В этих условиях германий можно определять после восстановления иодометрически, причем мышьяк, кадмий, хром (III), медь (II, I), кобальт, железо (III), свинец, никель, селен, теллур, таллий, олово, титан, ванадий (V, IV), цинк при молярном отношении в растворе Ge Ме=1 1 определению не мешают 18731. [c.311]

    Полярографическому определению селена и теллура мешают цинк, свинец, железо (П1) и многие другие элементы, сопровождающие селен и теллур в минеральном сырье. Кроме того, определению селена мешают ионы нитрата, восстанавливающиеся при жтотенциале, близком к потенциалу восстановления селена (IV),, а также органические вещества, содержащиеся в фильтровальной бумаге и извлекающиеся в сильнокислый раствор. Эти вещества -смещают потенциал выделения аммония в положительную сторону [42]. Прй этом искажается полярограмма селена, так как сокращается ее верхняя площадка. [c.80]

    При выполнении полного спектрального анализа следует рекомендовать вести расшифровку спектрограммы по аналитическим спектральным линиям при определенном порядке расшифровки элементов (см. табл. 4). Целесообразнее вначале обратить внимание на наиболее распространенные в природе элементы кремний, алюминий, железо, кальций, магний, натрий, калий. Тогда вероятнее всего будут вначале определяться основные элементы проб, а потом примеси. Далее, в табл. 4, в некоторой степени учтено совместное присутствие элементов в природных образованиях. Так, например, гафний всегда надо расшифровывать после п,ирко-ния, кадмий — после цинка. Элементы медь, свинец, цинк, кадмий, серебро, сурьма, висмут, мышьяк, теллур— [c.10]

    П2, 113]. Кро.ме того, возможно потенциомет )ическое титрование избытка члористого тетрафениларсония иодом при осаждении перрената тетрафениларсония. Определению мешают большие количества нитрат-ионов, а также элементы, образующие с реактивом трудиорастиоримые осадки (теллур, висмут, ртуть (II), олово (IV), серебро, свинец при больших концентрациях хлор-ионов мешают также цинк и кадмий). В, 1ияиие молибдена устраняют добавлением оксикислот [56]. [c.637]

    Определению индия мешают медь, свинец, кадмий, мышьяк, олово, сурьма, висмут, селен, теллур и большие количества кремневой кислоты и железа. Для устранения мешающего влияния этих металлов при определении индия разработаны различные схемы химической подготовки пробы. В ходе анализа свинец выделяют в виде сульфата медь, кадмий и цинк отделяют в виде растворимых аммиачных комплексов, олово и сурьму—в виде летучих хлоридов или бромидов в присутствии окислителя. Мышьяк, селен и теллур отделяют от индия из солянокислого раствора в присутствии восстановителя—солянокислого гидразина. Мышьяк при этом улетучивается в виде А8С1д, а селен и теллур выпадают в осадок в элементарном состоянии. Небольшие количества меди и сурьмы отделяются в виде губки при восстановлении трехвалентного железа (восстановление проводится порошком железа, восстановленного водородом). [c.262]

    Методы, применяемые для отделения золота от большинства элементов, основаны на том, что его легко восстановить до металла Применяя под-ходяш,ие носители золото можно легко осадить из предельно разбавленных кислых растворов такими восстановителями, как хлорид олова(П), цинк и магний. В качестве носителей можно использовать ртуть, хлорид ртути(1), свинец и теллур. Для этой цели особенно пригоден теллур. Осадок элементарного теллура, образующийся при восстановлении хлоридом олова(П), содержит золото в виде теллурида. Осадок можно растворить в царской водке. Перешедший в раствор теллур не мешает определению золота, если определение производится с помощью роданина или родамина Б. Если же золото определяют с помощью хлорида олова(П), то теллур затем следует удалить, сильно прокаливая осадок, чтобы улетучилась двуокись теллура. Указания для проведения соосаждения с теллуром будут даны ниже в этой главе при описании роданинового метода опре- [c.444]

    Определению рения этим методом не мешают следующие элементы церий, кобальт, хром, галлий, германий, индий, иридий, свинец, никель, осмий, рутений, таллий, уран и ванадий (каждый, присутствуя в количестве 2 мг). Хром в больших количествах (40 мг) придает эфиру слабый зеленый оттенок. Мешают определению платина, родий и вольфрам, так как они окрашивают эфирный слой. Медь, золото, палладий, селен и теллур не окрашивают эфира, зато выделяются в элементарном состоянии и загрязняют ртуть. Ниже приведен метод определения рения, предложенный Гоффманом и Ланделем. [c.680]


Смотреть страницы где упоминается термин Определение теллура в свинце: [c.291]    [c.89]    [c.46]    [c.150]    [c.58]    [c.133]    [c.57]    [c.28]    [c.568]    [c.475]   
Смотреть главы в:

Калориметрические (фотометрические) методы определения неметаллов -> Определение теллура в свинце




ПОИСК





Смотрите так же термины и статьи:

Божевольнов, Е.А. Соловьев, Н. А. Лебедева НИЗКОТЕМПЕРАТУРНЫЙ ЛЮМИНЕСЦЕНТНЫЙ МИКРОМЕТОД ОПРЕДЕЛЕНИЯ ТАЛЛИЯ, СВИНЦА, ВИСМУТА И ТЕЛЛУРА

Осциллополярографическое определение меди, теллура и цинка в арсениде галлия, мышьяке и свинце

Осциллополярографическое определение теллура и цинка в свинце

Радиоактивационное определение никеля, цинка, меди, селена, теллура и золота в свинце

Свинец теллура

Теллур

Теллур, определение в меди и свинце

Теллур, определение примеси свинца

Теллуриты



© 2025 chem21.info Реклама на сайте