Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение точки эквивалентности в методе осаждения

    И. М. Кольтгоф, В. А. Стенгер. Объемный анализ. Госхимиздат, 1950, (т. I. 376 стр.) и 1952, (т. И, 444 стр.). В т. I рассматриваются теоретические основы объемного анализа. Изложена теория методов нейтрализации и соединения ионов, приведены кривые титрования для различных случаев метода нейтрализации. Отдельные главы содержат материал ио теории методов окисления-восстановления, теории индикаторов, по ошибкам титрования. Рассмотрены явления адсорбции и соосаждения, катализа и индукции, применение объемных методов в органическом анализе описаны теоретические положения, касающиеся применения физико-химических методов для определения точки эквивалентности. В т. 11 книги изложено практическое применение методов нейтрализации, осаждения и комплексообразования. В томе 111 (840 стр., 1961 г.) описано применение окислительно-восстановительных методов объемного анализа. [c.486]


    При использовании в амперометрическом титровании реакций осаждения точки для кривой титрования находят в условиях, когда растворимость осадка меньше, чем в точке эквивалентности. Благодаря этому применение рассматриваемого метода оказывается возможным для определения веществ, образующих довольно хорошо растворимые осадки, когда ни потенциометрический, ни индикаторный метод не могут дать хороших результатов. Кроме того, в отличие от других электрометрических методов анализа данный метод позволяет проводить определения малых количеств веществ в сильно разбавленных растворах [c.183]

    Типичные результаты потенциометрического титрования по реакции осаждения с использованием хлорид-иона и иона серебра приведены в табл. 11-5. В первой колонке представлены отсчеты на бюретке, во второй — потенциал серебряного индикаторного электрода, измеренный относительно насыщенного каломельного электрода (Нас. КЭ), соответствующий каждому объему прибавленного титранта. Заметим, что порции прибавленного объема титранта большие в начале титрования, пока потенциал индикаторного электрода изменяется весьма незначительно. Однако в области точки эквивалентности прибавляют небольшие и равные объемы титранта. Предварительное титрование данной системы укажет момент приближения точки эквивалентности. Для определения точки эквивалентности в потенциометрическом титровании можно использовать любые из следующих методов. [c.389]

    Помимо индикаторного способа определения точки эквивалентности, который применяют при титровании в методах нейтрализации, иодометрии, осаждения и т. п., существуют и другие способы определения, основанные на наблюдении свойств раствора, резко изменяющихся в момент эквивалентности. Большое значение имеют так называемые физико-химические методы определения точки эквивалентности, основанные на измерении при помощи специальных приборов некоторых физико-химических свойств растворов (например, электропроводности), которые меняются в процессе титрования постепенно, а в момент эквивалентности— резко. К этим методам относятся кондуктометр ический, высокочастотный, потенциометрический, амперометрический и некоторые другие методы титрования. [c.267]

    Какие поправки необходимо вводить при определении точки эквивалентности методом осаждения В каких случаях этими поправками можно пренебрегать  [c.435]

    Если при помощи подходящего электрода можно оценить изменение концентрации хотя бы одного вида ионов из числа участвующих в реакции, происходящее при титриметрическом определении (реакции нейтрализации, осаждения, комплексообразования и окисления — восстановления), то для определения точки эквивалентности можно применить метод потенциометрии. При определенных условиях метод пригоден для проведения дифференцированного титрования смесей веществ. [c.121]


    Описан нефелометрический метод определения серебра при осаждении его в виде хлорида [588] и титрованием раствором хлорида натрия с нефелометрическим определением точки эквивалентности [851]. [c.106]

    Анализ по отражению -частиц применяют для установления эквивалентной точки при титровании методом осаждения [269]. В этом случае строят кривые зависимости интенсивности отражен ного -излучения как функции объема прибавленного титрован ного раствора. Определение точки эквивалентности производят так же, как и при радиометрическом титровании. [c.150]

    Метод титрования с двумя индикаторными электродами чаще всего используется для определений, основанных на реакциях окисления — восстановления. Однако в нем используются также реакции осаждения и нейтрализации. Это стало возможным благодаря введению так называемых электрометрических индикаторов. Например, для того чтобы оттитровать раствор кислоты раствором щелочи, добавляют к титруемому раствору несколько капель раствора иода. До точки эквивалентности ток в цепи почти отсутствует, после точки эквивалентности, когда в цепи появляется избыток щелочи, образуются иодид-ионы и, таким образом, возникает пара Ь — 21-, вызывающая возрастание тока. [c.186]

    Определение точки эквивалентности в методе осаждения [c.236]

    ОПРЕДЕЛЕНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ В МЕТОДЕ ОСАЖДЕНИЯ 237 [c.237]

    Реакции осаждения. Метод электропроводности также пригоден для определения точки эквивалентности в реакциях осаждения. Кривая осаждения иона Ag+ хлоридом натрия приведена на рис. 15. Анализ кривой в отношении отдельных ионов аналогичен тому, который дан для ранее рассмотренных реакций. В кондуктометрИИ допустима даже такая растворимость осадка, которая делает его неприменимым в весовом анализе. Влияние заметной растворимости осадка проявляется в округлении отрезка кривой в месте пересечения двух ее ветвей. Если это влияние не слишком велико, можно еш,е достичь достаточной точности определения путем удлинения прямых отрезков до их пересечения. Растворимость иногда можно уменьшить введением до 50% спирта и таким образом увеличить точность результатов. На рис. 16 показан особенно благоприятный случай титрования — [c.27]

    Радиометрическое определение точки эквивалентности при титровании по методу осаждения (радиометрическое титрование) находит широкое применение в аналитической практике [1, 2]. [c.194]

    Измерения электрической проводимости растворов широко применяют в титриметрическом анализе для определения точки эквивалентности (кондуктометрическое титрование). В методах кондуктометрического титрования измеряют электрическую проводимость раствора после добавления небольших определенных порций титранта и находят точку эквивалентности графическим методом с помощью кривой в координатах х—V (титранта). Практически в этом методе могут быть использованы такие химические реакции, в ходе которых достаточно заметно изменяется электрическая проводимость раствора или происходит резкое изменение (обычно возрастание) электрической проводимости после точки эквивалентности (реакции кислотно-основного взаимодействия, осаждения и т. д.). [c.175]

    Метод находит применение для определения серебра, галогенидов и роданидов. Для установления точки эквивалентности индикатором служат железоаммонийные квасцы. Раствор, содержащий соль серебра и индикатор, титруют раствором роданида калня или аммония. Пока осаждение роданида серебра не закончилось, ионы 5СМ , содержащиеся в рабочем растворе, полностью реагируют с ионами серебра в титруемом растворе. При достижении момента эквивалентности избыточные ионы [c.125]

    Плохая растворимость и быстрое осаждение хлорида серебра позволяют определять содержание хлорид-ионов методом осадительного титрования. В большинстве случаев при аргентометри-ческом определении хлорид-иона используют специфические индикаторы как при прямом, так и при обратном титровании. Хорошо известен титриметрический метод Мора, в котором конечную точку титрования устанавливают с помощью хромата калия, образующего с ионами серебра красный осадок хромата серебра. При титровании по Фольгарду хлорид-ионы осаждают нитратом серебра, а избыток ионов серебра оттитровывают стандартным раствором, содержащим тиоцианат-ионы, в присутствии в качестве индикатора соли железа (П1), образующей красный комплекс тиоцианата железа (П1). Несмотря на появление ряда полезных предложений [73], касаюншхся применения этих двух методов определения микроколичеств галогенов (т. е. с использованием 0,01 н. растворов), они не нашли широкого распространения, поскольку при титровании разбавленных растворов образование осадка хромата серебра не позволяет четко У -новить точку эквивалентности. Метод обратного титрования Фольгарду в принципе вообще пе годится для микроопределен  [c.360]


    В ходе кондуктометрического титрования происходит замещение конов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, электропроводность которых больше или меньше электропроводности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. После точки эквивалентности титрант уже не расходуется, поэтому обычно получают восходящие прямые, угол подъема которых зависит от электропроводности титранта. Точность индикации точки эквивалентности определяется углом пересечения прямых он должен быть возможно более острым, тогда точность определения достигает 0,3%. Обычная же точность метода до 1%. Наиболее острый угол пересечения прямых получается при кислотно-основном кондуктомет-рическом титровании, так как ионы Н+ и 0Н вносят особенно большой вклад в электропроводность раствора (см. табл. Д.21). Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять многие реакции осаждения и некоторые реакции комплексообразования. В принципе кондуктометрия годится и для индикации точки эквивалентности в окислительно-восстановительном титровании, если оно сопровождается изменением концентрации ионов НзО+. Но все же лучшие результаты дают в зтом случае другие методы индикации. [c.324]

    Метод радиометрического титрования основан на применении радиоактивных индикаторов для определения конечной точки титрования. В присутствии радиоактивного индикатора активность титруемого раствора изменяется пропорционально вводимому количеству титрующего раствора-осадителя. Когда осаждение закончено, изменение радиоактивности прекращается. Если индикатор находится в титруемом растворе, а титрующий раствор неактивен, то радиоактивность постепенно уменьшается в точке эквивалентности кривая радиоактивности идет параллельно оси абсцисс. Если индикатор находится в титрующем растворе, то радиоактивность сначала постоянная, а [c.533]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    Некоторые косвенные определения методом осаждения и комплексообразования также основаны на применении платинового электрода. В анализируемый раствор вводят окислительно-восстановительную систему, т. е. раствор, содержащий ионы какого-либо металла в двух степенях окисления. Далее в раствор погружают платиновую проволоку и приступают к титрованию. Рабочий раствор подбирают так, чтобы он реагировал с одним из ионов окислительно-восстановительной системы, но чтобы это взаимодействие происходило только после завершения основной реакции между определяемым веществом и рабочим раствором. В результате этого взаимодействия нарушается первоначальное соотношение концентраций окисленной и восстановленной форм, и в соответствии с этим Б точке эквивалентности изменяется потенциал платинового электрода. [c.465]

    Мембранные электроды широко применяют для измерения активности ионов в растворе методом прямой потенциометрии, например для определения анионов СЮ , NO3, Г, Вг , СГ, S N , катионных и анионных поверхностно-активных веществ (ПАВ) и др. Для аналитической химии представляет интерес возможность определения ионов путем потенциометрического титрования по методам окисления — восстановления, осаждения, комплексообразования. В этом случае нет необходимости пересчитывать активность на концентрацию, так как точку эквивалентности при титровании устанавливают путем наблюдения за изменением концентрации, а концентрация и активность при постоянной ионной силе раствора изменяются в одинаковой степени. [c.470]

    В основу метода радиометрического титрования положено определение точки эквивалентности по изменению радиоактивности раствора. В процессе титрования один из продуктов реакции выводится из водного раствора в другую фазу. Для этой цели используют реакции осаждения или эстракцию органическими растворителями. Для определения ртути получили развитие методы экстракционного титрования [203]. [c.136]

    Милаццо [553] титровал золото гидрохиноном после соосаждения его с медью или свинцом прн помощи сульфида натрия или сероводорода. Осажденную смесь сульфидов прокаливали, обрабатывали серной кислотой для отделения меди. Золото растворяли в царской водке и выпаривали раствор с соляной кислотой для удаления окислов азота. Прибавляли кислый фторид калия и титровали золото гидрохиноном в присутствии о-диани-зидина. Иридий мешает определению золота. В некоторых случаях окраска солей платины и родия затрудняет определение точки эквивалентности. Утверл<дение Милаццо о превосходстве этого метода над другими несправедливо. По мнению автора книги, соосаждение с медью и последующее селективное растворение меди приводят к большим ошибкам, чем соосаждение с теллуром, предложенное Поллардом [427]. Рассматривая вопрос [c.125]

    Кроме метода прямой кондуктометрии, измерения электрической проводимости растворов широко применяются в титриметрическом анализе для определения точки эквивалентности (кондуктометрнческое титрование). В методе кондуктометрического титрования могут быть использованы реакции осаждения, нейтрализации и т. д. Одним словом, могут быть использованы любые химические реакции, в ходе которых достаточно заметно изменяется электрическая проводимость или происходит резкое изменение (обычно возрастание) электрической проводимости после точки эквивалентности. [c.103]

    Гексацианоферроат(П) калия образует с цинком труднорастворимые соединение состава К22пз[Ре(СЫ)в]2 и 2п[Ре(СЫ)в]г. Последняя — это простая соль, выпадающая в осадок при действии на растворы соединений цинка. Метод осаждения обычно и используют для определения цинка методом амперометрического титрования. Определение можно вести либо по уменьшению силы тока катодного восстановления цинка до нуля в точке эквивалентности, либо по росту силы тока анодного окисления гексацианоферрата (II) после достижения точки эквивалентности. В последнем случае работают с платиновым вращающимся (не обязательно дисковым) электродом метод отличается большей точностью и селективностью. [c.307]

    Выше показано, что присутствие посторонних веш,еств, взаимодействующих с применяемым реактивом, ограничивает применение объемного анализа. Кроме того, с.педует иметь в виду, что в первой группе методов можно пользоваться только такилп хгмнческими реакциями, при которых образуется продукт с какими-либо особенными физическими свойствами. Так, продукт реакции должен выпадать в виде осадка, чтобы его можно было отфильтровать или иным способом отделить от раствора в других случаях продукт реакции должен быть окрашен, чтобы его количество можно было определить по окраске раствора. При объемном анализе такие условия вовсе не требуются наоборот, особенные физические свойства продукта реакций часто мешают установлению точки эквивалентности. Это важное обстоятельство обусловливает известное распределение различных типов реакций при их применении в количественном анализе. Реакции осаждения применяются главным образом в весовом анализе и при разделении элементов. Реакции образования окрашенных соединений (чаще всего — комплексного характера) применяются для колориметрических определений. Кислотно-основные [c.25]

    Концентрацию определенного компонента раствора (как заряженного, так и незаряженного) можно контролировать потенциометричес-ки, если подобрать электрод, потенциал которого определяется реакцией, включающей этот компонент Проводя титрование анализируемого компонента, потенциометрически определяют конечную точку титрования по резкому изменению потенциала электрода в точке эквивалентности. Так, используя электрод, потенциал которого зависит от pH раствора, можно провести потенциометрическое титрование кислоты или щелочи по методу нейтрализации. Индифферентные электроды используются для титрования обратимых окислительно-вос-становительных систем (окислительно-восстановительное потенциометрическое титрование). Широко применяется также потенциометрическое титрование по методу осаждения или комплексообразования. В этом случае рабочий электрод должен быть обратим по отношению к компоненту раствора (чаще иону), который в процессе титрования образует осадок или комплекс. [c.123]

    Метод основан на восстановленпн солями хрома (II) перрената до четырехвалентного рения. Титрованне проводят при 60—70° С в среде 4 н. серной кислоты в присутствии небольших количеств иодида калия как катализатора. Точку эквивалентности устанавливают с помощью компенсационного потенциометра, применяя в качестве индикаторного электрода платиновую пластинку, а в качестве электрода сравнения — насыщенный каломельный полуэлемент. Определение возможно в присутствии небольших количеств молибдена (Re Mo= 1 1), а также-железа, титана, хрома, ванадия, никеля, кобальта, ниобия и меди. Последние легко отделяются в виде гидроокисей путем осаждения аммиаком или щелочью перед титрованием. [c.389]

    Титриметрические методы подразделяются на две большие группы. В первую группу входят методы, основанные на ионных реакциях нейтрализация, осаждение и комплексообразование. Во вторую группу входят окислительно-восстановительные методы, основанные на реакциях окисления — восстановления, которые связаны с переходом электронов от одной частицы к другой. Применяемые реакции должны удовлетворять ряду требований. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Реакция должна протекать с достаточной скоростью, поэтому необходимо создавать оптимальные условия, обеспеч1шающие быстрое течение реакции концентрацию реагирующих веществ и среду, в которой протекает реакция, температуру и в ряде случаев катализатор. Установление точки эквивалентности должно производиться достаточно надежно. Во многих случаях для этого применяют специальный индикатор. [c.325]

    Потенциометрически можно производить многие аналитические определения, используя различные методы объемного анализа, наиример метод осаждения, нейтрализации, оксидиметрии и др. Однако в каждом конкретном случае необходимо правильно подобрать соответствующий индикаторный электрод, потенциал которого заметно бы реагировал на изменение концентрации определяемых ионов в растворе. Теоретический расчет и опытные данные показывают, что наибольшее изменение величины иотенциала индикаторного электрода наблюдается вблизи эквивалентной точки. Таким образом, резкое изменение величины электродного потенциала служит своеобразным индикатором, указывающим на конец титрования. [c.311]


Смотреть страницы где упоминается термин Определение точки эквивалентности в методе осаждения: [c.471]    [c.47]    [c.300]    [c.452]   
Смотреть главы в:

Курс аналитической химии Книга 2 -> Определение точки эквивалентности в методе осаждения

Курс аналитичекой химии издание 3 книга 2 -> Определение точки эквивалентности в методе осаждения

Курс аналитической химии Издание 5 -> Определение точки эквивалентности в методе осаждения

Курс аналитической химии Кн 2 Издание 4 -> Определение точки эквивалентности в методе осаждения




ПОИСК





Смотрите так же термины и статьи:

Метод осаждения

Точка методы определения

Точка при осаждении

Точка эквивалентности

Точка эквивалентности, определени

Эквивалентная точка

Эквивалентности точка осаждення



© 2025 chem21.info Реклама на сайте