Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции карбониевых ионов с ароматическими соединениями

    Первой стадией реакции является образование я-комплекса ароматического соединения с молекулой хлора. Катализатор взаимодействует с этим комплексом, что помогает поляризации связей и образованию карбоний-иона  [c.423]

    При расщеплении парафинового и олефинового сырья ароматические углеводороды не образуются, поскольку реакции конденсации и циклизации в среде высокого давления водорода и в присутствии гидрирующих катализаторов подавляются. Все основные реакции гидрокрекинга проходят через образование промежуточного углеводородного соединения — карбоний-иона, обладающего зарядом. [c.87]


    В присутствии сильных кислот или кислот Льюиса (катализаторы Фриделя — Крафтса) даже бензол и другие ароматические соединения могут во второй стадии реакции присоединения нуклеофильно реагировать с ионами карбония, образовавшимися из олефинов, причем получаются алкилиро-ванные ароматические соединения, например  [c.390]

    Мы уже познакомились ранее с последовательностью, противоречащей индуктивному ряду, которая была названа эффектом Натана — Бейкера (см. стр. 82). Поэтому и в рассматриваемом случае ход относительных скоростей реакции можно было бы объяснить также гиперконъюгацией . Однако мы предпочитаем следующее объяснение, которое требует меньще допущений. Электрофильное замещение ароматических соединений происходит через сильно заряженное переходное состояние или положительно заряженный ион карбония. Очевидно, вследствие вытекающего отсюда сильного полярного влияния очень значительную роль должна играть сольватация в качестве стабилизирующего фактора. Между тем сольватация оказывается пространственно затрудненной в тем больщей мере, чем объемистее группы, связанные с ароматическим ядром. [c.429]

    Первая стадия реакции может заключаться в протонировании формальдегида (стадия 1) с образованием активных форм, способных электро-фильно воздействовать на ароматическое кольцо (стадия 2). Образующееся промежуточное соединение под действием протонированного формальдегида разлагается с образованием карбоний-иона типа бензильного. Этот бензильный карбоний-ион может затем реагировать двояко взаимодействовать с хлоридом, образуя хлорбензил — целевой продукт (третья стадия), или с ароматическим кольцом, образуя дифенилметановую струк- УРУ — наиболее распространенный побочный продукт (четвертая стадия). Как это видно, одна и та же промежуточная активная форма — бензильный карбоний-ион — взаимодействует в реакциях (3) и (4) соответственно с хлор-ионом и ароматическим кольцом. [c.358]

    В 1887 г. французский химик Шарль Фридель и работавший у него американский студент Джеймс Крафте открыли весьма важную для органической химии реакцию, которая в настоящее время называется реакцией алкилирования по Фриделю—Крафтсу. Используя в качестве катализатора небольшое количество галогени-да металла, они присоединили алкилгалогенид к ароматическому соединению. Впоследствии, изучая эту реакцию, химики обнаружили, что алкилирование происходит в том случае, если имеется ион карбония, который атакует ароматическое кольцо. Так, вместо алкилгалогенидов можно использовать спирты и алкены. Ниже приведены примеры реакции алкилирования по Фриделю-Крафт-су  [c.324]


    Статьи Ионизационные потенциалы в органической химии , Реакции нуклеофильного замещения в ароматических соединениях , Ионы карбония и Исследование уравнений, связывающих строение и реакционную способность органических соединений переведены канд. хим. наук И. Я- Левитиным, статьи Равновесие ионизации и диссоциации в растворах в жидком сернистом ангидриде , Количественное сравнение слабых органических оснований и Реакции электрофильного ароматического замещения переведены канд. хим. наук В. А. Братцевым, статьи Вторичные изотопные эффекты и Механизм и катализ простых реакций карбонильной группы переведены В. Б. Шуром. [c.6]

    Таким образом, возникает сложная картина изотопных эффектов, и, по всей вероятности, невозможно дать полностью удовлетворительного объяснения, пригодного для всех случаев. Не всегда ясно, почему в некоторых реакциях отщепление протона входит в стадию, которая определяет скорость реакции, а в других — нет. По-видимому, многие факторы необходимо учитывать в тех случаях, когда точно установлено, что переходное состояние с разрывом связи С — Н входит в стадию, определяющую скорость реакции. Таким фактором не может быть только строение ароматического субстрата, поскольку наблюдается изотопный эффект при иодировании анизола иодом и монохлоридом иода, но при нитровании того же анизола бензоилнитратом, при бромировании бромом или при алкилировании ионом карбония, полученным из бензгидрола, изотопный эффект отсутствует. Бензол реагирует быстрее, чем дейтеробензол, при мерку-рировании и при ацилировании, но не при нитровании или бромировании. При иодировании фенола наблюдается изотопный эффект, но он отсутствует при его бромировании. Вообще наличие изотопного эффекта должно быть весьма характерным для реакций фенола, поскольку промежуточное соединение, образующееся в ходе реакций, вероятно, не заряжено в отличие от того, как это бывает обычно во многих реакциях замещения, напри- [c.475]

    Ароматические соединения, имеющие я-электронное облако (например, 6 делокализованных электронов бензола), обладают способностью вступать в многочисленные реакции электрофильного замещения при действии электрофильных реагентов (Х+). Атакующий электрофильный реагент образует с ароматическим соединением сначала л-комплекс (Х взаимодействует с электронным облаком), из которого затем образуется с-комплекс (ион карбония, Х связан с одним из 6 углеродных атомов кольца). Оба промежуточных продукта не могут быть уловлены в виде устойчивых соединений, однако их можно обнаружить различными методами, например спектроскопическим.  [c.84]

    Реакции альдегидов и кетонов с основаниями в широком смысле к ним относятся соединения с неподеленными электронными парами на гетероатоме (азотистые основания, спирты) и п-электронными системами (олефины, ароматические соединения). Активирование карбонильной группы в этом случае достигается чаще всего при помощи протонных кислот (серной, соляной). Они протонируют кислородный атом карбонильной группы, вызывая появление частичного положительного заряда на атоме углерода и в итоге образование иона карбония  [c.662]

    Величины чаще и успешнее всего применяются при обсуждении электрофильного ароматического замещения и реакций ароматических соединений по центрам в боковой цепи [1224]. При этом для различных реакций рассматриваются не только переходные состояния с меняющейся степенью карбоний-ионного характера, но и структурно различные карбониевые ионы. Так, например, формулы 4.10 и 4.11 изображают переходные состояния (и соответствующие карбоний-ионы), относящиеся к Sxl-реакции бензильного катиона, а формулы 4.12 и 4.13 — соответствующие структуры для ароматического нитрования. [c.119]

    В действительности при катализе комплексом хлористого алюминия с углеводородом необходимый для этого протон уже имеется в виде ст-комплекса. Он передается молекуле олефина, и образовавшийся ион карбония атакует ароматическое соединение, причем вся реакция происходит в слое катализаторного комплекса, который непрерывно обмеИивается своими лигандами с угле водородным слоем. [c.301]

    Относительные величины реакционной способности, приписанные трем типам углерод-водородных связей для каталитического крекинга изомеров гексана при 550° будут П = 1, В — 2 и Т — 20. Таким образом, отмеченное выше замедление крекинга четвертичными структурами в действительности является следствием отсутствия третичных углерод-водородных связей, как это имеет место в случае 2,2-диметилбутана. Повидимому, достаточно точное предсказание относительной глубины крекинга изомеров более высокомолекулярных парафинов может быть сделано на основании данных, полученных с изомерами гексана. Иными словами, с увеличением общего числа углерод-водородных связей должна иметь место большая глубина крекинга. Хорошо известно, что с повышением молекулярного веса легкость крекинга также увеличивается, но в случае соединений с большим молекулярным весом труднее провести различие между крекингом и другими реакциями, например образованием ароматических соединений перераспределением водорода и т. п. Кроме того, имеется ряд известных аномалий, значительно усложняющих картину, и даже в случае простого углеводорода, например 3-метилпентана, оказывается весьма трудным объяснить образование больших количеств пропилена и пропана. Отмечено [6] почти полное отсутствие других изомеров гексана в получающемся продукте, указывающее на то, что во время реакции крекинга должна происходить перегруппировка как составная часть реакции крекинга. Иначе говоря, образование связи углерод — катализатор, вызывающее скелетную изомеризацию, одновременно вызывает также и реакцию крекинга, в результате чего изомеризо-ванный парафин с тем же числом атомов углерода как исходный присутствует только в виде иона карбония. [c.170]


    Учитывая эти факты, подтверждающие карбоний-ионный механизм для третичных алкилпроизводных, а также более раннее рассмотренио механизма электрофильного замещения в ароматическом ядре (XLHI), был предложен следующий детализированный механизм для реакции ароматических соединений с третичными галоидалкилами в условиях реакции Фриделя-Крафтса (LXXX)  [c.437]

    Реакции оптически активных в го/ -бутилпроизводных с ароматическим кольцом были критически изучены Борвелом и сотрудниками [72]. Получаемый 2-фенилбутан был сильно рацемизовап — около 99%. Этот результат заставляет предположить, что реакция должна пдти через карбоний-ионный механизму, причем ароматическое соединение принимает лишь незначительное участие, если вообще принимает участие в стадии разрыва связи. Так как условия благоприятствуют механизму замещения, если он возможен, то представляется вероятным, что с вторичными алкил-производными предпочтительно будет идти реакция по карбоний-ионному механизму. В заключение можно сказать, что в реакции Фриделя-Крафтса механизм замещения, по-видимому, будет предпочтителен энергетически только для первичных галоидалкилов н родственных им производных, в то время как ионизационный механизм предпочтителен для вторичных и третичных алкилпроизводных. [c.441]

    К сон алению, количественной стороне этой реакции уделялось мало внимания. Из просмотра литературы создается впечатление, что хлорметилирование является больше искусством, чем наукой. О механизме реакции неизвестно ничего, кроме окончательных результатов. Возможно, что реакция включает стадию образования сравнительно устойчивых ионов карбония ROGH 2 и последующее взаимодействие их с ароматическим кольцом. Хотя незамещенные первичные карбоний-ионы являются вообще очень активными промежуточными соединениями, однако возможность резонанса RO — Hj, как можно ожидать, должна была бы сильно стабилизировать промежуточное соединение и этим облегчать его образование. [c.458]

    Циклический карбоний-ион быстро превращается в смесь изомерных карбоний-ионов А, каждый из которых может либо крекироваться, либо путем переноса водорода образовать нафтены и ароматические соединения В и С. Отнощение v /V2, по-видимому, в большинстве случаев близко к единице, и каждый циклический карбоний-ион имеет примерно одинаковые шансы крекироваться или снова превратиться в циклическое соединение. Не удалось пока объяснить эту уже отмечавшуюся выше при рассмотрении реакций изомеризации сильную тенденцию к сохранению циклической структуры (разд. IV.2). Водо-рододонорные свойства циклогексанов хорошо известны (разд. IV.4) и могут объяснить относительную степень насыщения легких продуктов крекинга отношение олефин/парафин в газах крекинга метилциклогексана и н-гептана равно соответственно 0,46 и 1,2 [274]. [c.131]

    Нафталин, подобно бензолу, подвергается реакциям ароматического замещения это одно из его свойств, которое позволяет отнести его к числу ароматических соединений. я-Электронное облако является источником электронов, доступных для электрофильного реагента, который присоединяется к кольцу с образованием промежуточного карбониевого иона затем ион карбония отщепляет протон, восстанавливая тем самым ароматическую систему. [c.986]

    Для описания процесса алкилирования ароматических углеводородов, в частности нафталина, в присутствии катализаторов кислотного типа наиболее приемлема разработанная Ф.Уитмором карбоний-ионная теория [62,63]. Согласно карбоний-ионной теории каталити-чески-активным центром является активный протон. При взаимодействии протона катализатора с двойной связью органического соединения быстро образуется ЗГ -комплекс, который в дальнейшем медленно, лимитируя скорость химической реакции, превращается в сэ -комплекс. При алкилироЕании нафталина >57 -комплекс представляет собой либо координационное соединение протона с -электронами двойной связи олефина [c.33]

    Реакция образующегося иона карбония с анионом кислорода решетки оксида ванадия ведет к иону алкоголята, который затем окисляется в о-толуиловый альдегид. Смещение заряда от ароматического соединения к катализатору можно обнаружить, измеряя электропроводность и термоэлектродвижущу ю силу оксида ванадия в ходе окисления ксилола [42]. С этой схемой согласуется и понижение энергии активации реакции окисления при введении в ароматическое кольцо заместителей, дающих положительный индукционный эффект (—СНз, —С1) [43]. [c.133]

    Дезалкилирование. Ионный механизм. Допустив, что алкилирование ароматических соединений олефинами происходит в соответствии с механизмом, изображенным уравнением (34), мы должны предположить, что при более высоких температурах, при которых алкил-ароматические соединения становятся менее устойчивыми по сравнению с олефином и исходным ароматическим углеводородом, будет протекать обратная реакция (табл. 8-1). Об этом же говорят и многочисленные данные по дезалкилированию, в особенности результаты исследования крекинга кумола, который широко используется в качестве модельной реакции для еравнения каталитической активности (см. например, табл. 8-3). Исходя из кинетических факторов (стабильности различных ионов карбония) или из термодинамических соображений (зависимости констант равновесия от температуры—табл. 8-3), можно предположить, что легкость отщепления алкильных групп должна уменьшаться в такой последовательности  [c.81]

    Те же соображения приложимы к третичным олефинам. В разбавленных растворах кислот единственной реакцией является реакция гидратации в соответствующий спирт [28, 30, 31]. Это происходит потому, что в разбавленных кислотах вода является основным соединением, способным реагировать с карбоний-ионом. При повышении концентрации кислоты понижается концентрация воды и карбоний-ион может реагировать с присутствующими углеводородами. Если присутствуют изопарафины, может протекать реакция переноса водорода. Необходимость молярного соотношения изобутан олефин = 5 1 указывает, что олефин, вероятно, реагирует в 2 или 3 раза легче, чем изопарафин. Ароматические углеводороды реагируют наиболее быстро с карбоний-ионом [14]. В случае изобутана, бензола и изопропйл-иона было найдено [14], что изопропил-ион реагирует в 350 раз быстрее с ароматическим углеводородом, чем с изопарафином. [c.35]

    Отрицательный ион играет важную роль, подобную роли нуклеофильного реагента в теории Свэна 101] протекания реакций замещения. Необходимость стабилизации путем ассоциирования очевидна из того факта, что энергия, требуемая для образования свободного карбоний-иона из парафинового углеводорода, составляет примерно 250 ккал, что значительно превышает энергию, необходимую для получения их в качестве промежуточных соединений в реакциях (см. также [15]). Кроме того, будучи связанными с отрицательно заряженными ионами, карбоний-ионы в реакциях каталитического крекинга существуют главным образом только в переходном состоянии. Они не столь устойчивы и образуются не в столь значительных количествах, как ароматические карбоний-ионы типа (СбН5)зС , образование которых наблюдалось в присутствии 100% серной кислоты [76]. [c.423]

    Крекинг ароматических углеводородов. Ароматические углеводороды с алкильными группами в присутствии крекирующих катализаторов мепее реакционноспособны, чем непредельные углеводороды. Для объяснения реакций крекинга ароматических углеводородов следует допустить воздействие протона или кислотного реагента на ароматическое кольцо. Были предложены две гипотетические возможности такого воздействия 1) присоединение протона с образованием обычного карбоний-иона и 2) замещение боковой группы протоном [37]. Присоединение протона, вероятно, проходит через стадию я-комилекса. Браун и Бреди [14] показали, что л-комнлекс образуется в ассоциированных соединениях, одпако в реакциях, проводимых в присутствии кислотных катализаторов, наблюдается образование промежуточных соединений с настояще связью с кольцом (образование а-ком-плекса). Этой точке зрения отдается предпочтение, хотя допущение об образовании обычного карбоний-иона также приемлемо для объяснения результатов, полученных при исследованиях, и не отличается от схемы, применяемой для объяснения реакщш олефиновых углеводородов. [c.429]

    Теория карбоний-ионов объясняет основные особенности каталитического-крекинга, за исключением образования ароматических углеводородов из-соединений с прямой цепью и дегидрогенизации нафтеновых углеводородов, подобных декалину, сопровождающейся выделением молекулярного водорода.. Образование ароматических углеводородов частично можно считать результатом полимеризации и дегидрогенизации путем переноса водорода. Дегидрогенизация, сопровождающаяся выделением молекулярного водорода и наблюдаемая при крекинге высокомолекулярных нафтеновых углеводородов, протекает лри невысокой дегидрогенизационной активности катализатора такой же, например, как у у-окиси алюминия с сильно развитой поверхностью. Аналогичные реакции ароматизации и дегидрогенизации наблюдались в присутствии хлористого алюминия и до настоящего времени не получили удовлетворительного объяснения. Вероятно, наиболее слабым местом теории является отсутствие ясного представления о способе пницииро-вания реакций крекинга парафиновых углеводородов. Для выяснения этого вопроса требуется проведение серьезных исследований. [c.430]

    В этом случае образование иона карбония П представляет собой стадию, определяющую скорость реакции. Так как в таком процессе связь между ароматическим атомом углерода и водородом остается практически незатронутой, а водород отщепляется только лишь в стадии, не определяющей скорость реакции, то ароматическое соединение, помеченное при реакционном центре дейтерием или тритием, должно реагировать с одинаковой скоростью, и поэтому 13отопный эффект не имеет места. В действительности было найдено, что, например, нитрование или бромирование простых ароматических соединений происходит без кинетического изотопного эффекта. Этот результат говорит, кроме того, против синхронного механизма (7.53, о), при котором должен был бы наблюдаться кинетический изотопный эффект. [c.410]

    Подобно алкильным группам, для ароматических соединений с сильными—/-заместителями (например, —можно также оценить стабильность ионов карбония, соответствующих отдельным конкурирующим реакциям, В любом случае индуктивный эффект дестабилизирует ион карбония и притом сильнее всего тогда, когда возникающий при делокализацни л-электронов частичный положительный заряд. может находиться в непосредственном соседстве с —/-заместителем, Это имеет место при орто- и пара-реакциях. Реакция в. иега-положенин требует поэтому меньшей энергии активации и происходит в общем при тониженной электроь ной плотности, т, е. реакционной способности  [c.422]

    Так как ацильная группа в конечном продукте ацилирования по Фриделю — Крафтсу вследствие своего —I- и —УИ-эф-фекта снижает электронную плотность в основном состояния и поэтому не способствует стабилизации иона карбония, то ацилированное ароматическое соединение уже не способно к дальнейшей реакции с электрофильным комплексом кислоты Льюиса и производного кислоты. Поэтому всегда образуются моноацилированные соединения. Но, с другой стороны, не имеет места также замещение ацильного остатка ионом водорода, [c.453]

    Образование имидхлорида не поотиворечнт сделанному выше (см. стр. 338) утверждению о том, что соляная кислота образует с нитрилами только я-комплекс. По-видимому, указанные кислоты Льюиса катализируют переход л-комплексов в ионы карбония, как было показано при аналогичной реакции галогеноводородиых кислот с ароматическими соединениями, которые без кислоты Льюиса образовывали только зт-комплексы, а в ее присутствии — о-комплексы. [c.455]

    Обычные методы прямого алкилирования ароматических соединений (ОР, 3, 7) формально аналогичны методам ацилирования. Механизм заключается в атаке кольца ионом карбония и, таким образом, аналогичен механизму обсужденных выше реакций замевдения [1]. [c.69]

    Карбонильные соединения. Альдегиды и кетоны конденсируются с ароматическими соединениями по типу реакции Фриделя — Крафтса. В благоприятных условиях продуктами реакции являются карбинолы. В общем случае этот метод мало пригоден для синтеза карбинолов, так как последние слишком реакционноспособны в условиях реакции и подвергаются дальнейшим превращениям. Формальдегид реагирует с бензолом в присутствии серной кислоты, образуя дифенилметан, причем предполагается промежуточное образование бензилового спирта или бензильного иона карбония. л-Ксилол и ацетальдегид дают 1,1-диксилилэтан. Пиролизом последнего получают 2,4-диметилстпрол. [c.77]

    Ион нитрония, взаимодействуя с ароматическим соединением, образует а-комплекс (ион карбония). Это наиболее медленная стадия реакции. Образованию о-комплекса предшествует быстрая равновесная реакция возникновения я-комплекса. На второй стадии происходит быстрое отщепление протона и образование нитросоединения. При [c.96]

    Алкилирование и ацилирование ароматических соединений по Фриделю-Крафтсу. Метод Фриделя—Крафтса основан на резком повышении электрофильности алкилгалогенидов и галогенангидридов карбоксильных кислот при комплексообразовании с безводным А1С1з или другой аналогичной апротонной кислотой. Используя А1С1з или другие апротонные кислоты совместно с алкенами, можно генерировать соответствующие ионы карбония, также способные к электрофильной атаке ароматического углерода. Возможно несколько вариантов реакций этого типа. [c.329]

    Предшественниками, из которых легко образуются электрофилы (реакция 4), служат алифатические спирты, алкилгалогенйды и разветвленные алкены, способные образовывать третичные ионы карбония. Ароматические соединения могут атаковать также электрофилы, в результате чего образуются алкилароматические соединения, содержащие четвертичный замещенный атом углерода. Другой, более специфической, чем алкилирование, является реакция ацилирования по Фриделю—Крафтсу. В результате реакций [c.327]

    Константы скорости и равновесия реакций мета- и па оа-замещенных ароматических карбонильных соединений, а также шиффовых оснований можно коррелировать с величинами ст Гаммета, которые учитывают в основном (но не полностью) индуктивные эффекты заместителей, или с величинами а+, учитывающими больший резонансный вклад смещения электронов от заместителя за счет резонанса. Ряд реакций карбонильных соединений и шиффовых оснований подчиняется в пределах точности имеющихся данных той или другой корреляции, однако во многих других случаях константы скорости и равновесия коррелируют со значениями констант заместителей, лежащими между а и а+. Это не удивительно, поскольку реакции с участием подобных соединений, в особенности при протонировании, как и можно было ожидать, значительно более восприимчивы к резонансным эффектам, чем реакция ионизации производных бензойной кислоты, на которой основаны величины а, но менее восприимчивы к этим эффектам, чем реакции ионов карбония или реакции электрофильного замещения, на которых основаны величины а+. Имеющиеся для этих реакций количественные данные можно было бы наиболее удовлетворительно обработать, учитывая как резонансные, так и индуктивные эффекты заместителей, как было подробно описано Тафтом и сотрудниками [176]. Юкава и Цуно [198] предложили для этих целей особенно простое и четкое эмпирическое уравнение [c.379]

    По своему механизму реакция алкилирования ароматических соединений принадлежит к типичным процессам электрофильного замещения в ароматическом ядре. Активной частицей в этом случае является ион карбония или сильно поляризованный комплекс, имеющий значительный положительный заряд на углероде алкильной группы. При катализе протонными кислотами ион карбония возникает путем передачи протона олефину  [c.347]

    Диазониевые соли представляют собой сочетание карбониевого иона с N2, и вследствие чрезвычайно большой стабильности азота в форме N2 можно ожидать, что соли диазония будут сравнительно легко разлагаться, выделяя азот и образуя ионы карбония. Это предположение оказывается верным, и эти соединения в водном растворе обычно разлагаются именно таким образом при этом алифатические ионы диазония разлагаются настолько быстро, что об их кратковременном существовании свидетельствует только промежуточное образование соединений, претерпевающих превращения, характерные для карбониевых ионов. Ароматические ионы диазония, включая ион фенилдиазония СвНбЫ , настолько устойчивы, что могут быть получены в индивидуальном состоянии (в сочетании с опреде ленными анионами, обладающими малой нуклеофильностью, например С1 , ВР и др.), однако даже эти ионы диазония в водном растворе при комнатной температуре медленно разлагаются по реакции ЗкЬтипа и образуют карбониевые ионы, устойчивость которых [c.64]

    Бром также может присоединяться к подходящим ароматическим соединениям, хотя в целом этот процесс не так распространен, как присоединение хлора. Сампи, Кокс и Кинг [70] исследовали ряд углеводородов. Наиболее систематическое исследование механизма бромирования выполнено Прайсом [71]. Он изучал реакции фенантрена и показал, что кинетика образования дибромида и 9-бромпроизводного наиболее удовлетворительно объясняется независимыми реакциями общего промежуточного соединения, которое он считал ионом карбония. Стереохимически эта реакция представляет собой транс- [c.290]

    Во многих других реакциях в органической химии в качестве основы для объяснения протекающих процессов можно использовать образование реакционноспособных промежуточных продуктов со свойствами кислот Льюиса. Кроме упомянутого ацилового катиона К -С = 0 здесь можно назвать карбоние-вые ионы К -СН+, нитрониевые ионы N0+ или катионы Вг+. Все они отличаются электрофильным характером и играют существенную роль, например, в реакциях присоединения к двойным связям или нитрования ароматических соединений. [c.221]

    С ЭТОЙ же точки зрения интерпретировались данные по изучению распределения ароматических углеводородов между органическими растворителями и кислотами [193]. Существование аналогичных структур как промежуточных продуктов при реакциях изотопного обмена водорода для ароматических соединений было постулировано еще раньше [236]. В настоящее время роль карбониевых ионов в подобных реакциях обмена надежно установлена (разд. 4.2.5). Устойчивые ионы карбония недавно были получены даже по реакции протонирования веществ с малой основностью (таких, как бензол, ксилолы и другие полиметил-бензолы) при использовании HF—SbFs и других систем с высокой кислотностью [886, 887, 891, 892, 981] те же самые ионы могут быть выделены по реакции обмена бромциклогекса-диена-1,4 с AgSbFe [967] [ср. уравнение [c.70]


Смотреть страницы где упоминается термин Реакции карбониевых ионов с ароматическими соединениями: [c.243]    [c.339]    [c.41]    [c.74]    [c.93]    [c.440]    [c.182]   
Смотреть главы в:

Катионная полимеризация -> Реакции карбониевых ионов с ароматическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Ароматические ионы

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Карбоний-ионы

Карбоны соединениям

Соединение ионов

Соединения ионные



© 2025 chem21.info Реклама на сайте