Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный и ядерный квадрупольный резонанс (ЯМР и Ядерный магнитный резонанс

    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]


    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]

    Ядерный квадрупольный резонанс ядерный магнитный (ЯМР), см. Ядерный магнитный резонанс Резонансы 5/930, 932 Резонаторы оптические, см. Лазеры [c.700]

    В таблице приведены основные характеристики ядер, обладающих магнитным моментом. Величина сигнала относится к наблюдению ядерного магнитного резонанса (ЯМР) данного ядра в сферически симметричном электрическом поле. При наличии квадрупольного момента и тех случаях, когда симметрия поля ближайшего окружения ядра отличается от указанной, интенсивность сигнала резко падает за счет сильного расширения линии ЯМР. [c.317]

    Совершенно очевидно также, что полнота и ценность информации, получаемой отдельными спектральными методами, будут существенно возрастать при комплексном использовании инфракрасной, ультрафиолетовой и люминесцентной спектроскопии, электронного парамагнитного резонанса, ядерного магнитного и квадрупольного резонанса и ядерного гамма-резонанса. При этом для целей исследования механизма взаимодействия и подвижности адсорбированных молекул наиболее благоприятно сочетание методов инфракрасной спектроскопии и метода ядерного магнитного резонанса. Для исследования центров адсорбции кислотной, природы важно сочетание инфракрасной спектроскопии е исследованием ультрафиолетовых спектров, спектров люминесценции и спектров ЭПР адсорбированных молекул. Все эти спектральные исследования, как и отмеченные выше исследования инфракрасных спектров, должны проводиться комплексно с рентгеноструктурными исследованиями, исследованиями поверхностных слоев методом дифракции медленных электронов, электронномикроскопическими, химическими и термодинамическими исследованиями. [c.438]


    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Соотношение Гамметта оправдывается с удовлетворительной точностью для очень большого числа реакций и также для тех физических свойств производных бензола, которые зависят от плотности заряда в определенном положении в кольце или в связанной с ним боковой цепи. Это относится, например, к химическим сдвигам частоты ядерного магнитного резонанса фтора в замещенных фторбензолах [43] и к частоте ядерного квадрупольного резонанса хлора в замещенных хлорбензолах [12]. [c.180]

    Ядерный магнитный резонанс был открыт годом позже другого весьма сходного с ЯМР явления — электронного парамагнитного резонанса (ЭПР), обнаруженного советским физиком Е. К. Завойским. Оба метода, ЯМР и ЭПР, относятся к числу радиоспектроскопических методов. Это название связано с тем, что в качестве излучения здесь используются электромагнитные волны радиоволнового диапазона. Существует еще один радиоспектроскопический метод — ядерный квадрупольный резонанс (ЯКР), в котором применяются электромагнитные волны этой же области] Метод ЯКР был открыт в 1952 году. [c.5]

    Магнитные свойства ядер используются в различных разделах спектроскопии в спектрах электронного парамагнитного резонанса (ЭПР), ядерного квадрупольного резонанса (ЯКР) и т, д. [c.254]

    Состояния мол. систем, переходы между к-рыми проявляются в виде тех или иных М. с., имеют разную природу и сильно различаются по энергии. Уровни энергии иек-рых видов расположены далеко друг от друга, так что при переходах молекула поглощает или испускает высокочастотное излучение. Расстояние между уровнями др. природы бывает мало, а в нек-рых случаях в отсутствие внеш. поля уровни сливаются (вырождаются). При малых разностях энергий переходы наблюдаются в низкочастотной области. Напр., ядра атомов нек-рых элементов обладают собств. магн. моментом и электрич. квадрупольным моментом, связанным со спином. Электроны также имеют магн. момент, связанный с их спином. В отсутствие внеш. поля ориентации магн. моментов произвольны, т.е. они не квантуются и соответствующие энергетич. состояния вырождены. При наложении внеш. постоянного магн. поля происходит снятие вырождения и возможны переходы между уровнями энергии, наблюдаемые в радиочастотной области спектра. Так возникают спектры ЯМР и ЭПР (см. Ядерный магнитный резонанс. Электронный парамагнитный резонанс). [c.119]

    Далее идет область радиоспектроскопии (область спектроскопии ядерного магнитного резонанса, ядерного квадрупольного резонанса и электронного парамагнитного резонанса). [c.8]

    Ядра, имеющие спин, равный О, имеют одно энергетическое состояние в магнитном поле (2-0+1). Они не являются объектами исследования ЯМР-спектроскопии. Ядра со спином 1 и больше, кроме магнитного момента, обладают электрическим квадрупольным моментом. Их свойства могут быть исследованы при помощи ядерного квадрупольного резонанса ( Н, С1, Вг, 1). [c.96]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР) применяется в химии несколько реже методов магнитной радиоспектроскопии. Метод ЯКР основан на поглощении радиоволн за счет изменения ориентации электрических квадрупольных моментов некоторых ядер (С , и др.) в неоднородных внутримолекулярных электрических полях, создаваемых валентными электронами. Положение линий ЯКР чрезвычайно сильно зависит от тонких деталей структуры исследуемого вещества, но недостаточная чувствительность метода ограничивает его применение чистыми кристаллами с относительно высоким содержанием атомов, ядра которых обладают квадрупольным моментом. В настоящее время разрабатываются импульсные спектрометры ЖР повышенной чувствительности, которые уже в последние годы привели к более широкому распространению метода ЯКР в химических исследованиях. [c.294]


    Уровни сверхтонкой структуры обусловлены наличием собственных моментов (ядерных спинов) у атомных ядер (табл. 14.3). Разности энергий этих уровней очень малы, составляя от десятимиллионных до стотысячных долей электрон-вольта (от тысячных до десятых долей обратного сантиметра). Переходы между такими уровнями лежат в основе группы радиоспектроскопических (спин-резонансных) методов анализа спектроскопии электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), ядер-ного квадрупольного резонанса (ЯКР) и др. [c.335]

    Как ядро так и ядро имеют магнитные моменты и могут давать спектры ядерного магнитного резонанса. Правда, ядро имеет спин 1 (см. табл. 1.1) и, следовательно, квадрупольный момент. Связанная с этим быстрая спин-решеточная релаксация (см. разд. 1.5) уширяет сигналы и делает их наблюдение затруднительным. Этих осложнений нет при наблюдении спектра имеющего спин /2, но интенсивность резонансного сигнала и естественное содержание изотопа еще ниже, чем в случае С. Обычно проводят обогащение образцов, хотя известны примеры наблюдения сигналов от необогащенных образцов [29]. [c.52]

    В табл. 13.3 приведены магнитные характеристики атомных ядер, представляющих наибольший интерес для химии. Два самых важных ядра, и 0, имеют нулевой магнитный момент и, следовательно, не активны в ядерном резонансе. Из активных ядер для ядерного магнитного резонанса наибольший интерес представляют изотопы Н, с, и Р, имеющие нулевой квадрупольный момент последнее обстоятельство приводит к тому, что эти ядра дают особенно резкие резонансные сигналы. Для ядерного квадрупольного резонанса наибольшее значение имеют [c.352]

    Магнитные Р. я, обусловлены установлением статистич. равновесия в системе магнитных моментов, связанных с полимерным веществом. Носители магнитных моментов могут иметь различную природу (электроны, обладающие собственными и орбитальными магнитными моментами ядра атомов, обладающие собственными магнитными моментами) и взаимодействовать друг с другом, поэтому магнитные Р. я. болео сложны и разнообразны но сравнению с электрич. Р. я. (см. Ядерный магнитный резонанс, Электронный парамагнитный резонанс, Ядерный квадрупольный резонанс). [c.165]

    Может быть показано, что принципиальным типом связи ядер-ных квадрупольных состояний и электромагнитного поля является магнитное взаимодействие. Поэтому методы измерения ядерного квадрупольного резонанса в принципе те же, что и применяемые для ядерного магнитного резонанса. Вещество помещается в катушку, через которую пропускается ток радиочастоты. Существенная разница состоит в том, что в случае ядерного квадрупольного резонанса частота целиком определяется веществом, вследствие чего мостиковые методы не применимы, так как они включают одновременную регулировку различных параметров цепи. Наиболее удобным и распространенным методом является использование частотно-модулированного суперрегенеративного осциллятора и помещение образца в змеевиковый виток колебательного контура настроенной схемы. Выпрямленное выходное напряжение проявляется затем на осциллоскопе, и резонансный сигнал находится путем измерения частоты осциллятора. Чувствительность метода может быть повышена путем пропускания выходного напряжения через узкополосный усилитель, синхронный детектор и регистрирующий милливольтметр. Суперрегенеративный осциллятор не часто использовался для низких частот, необходимых в случае азота, однако, по-видимому, нет никаких причин, в силу которых он был бы менее эффективным, чем регенеративные осцилляторы, применение которых дает такие неудовлетворительные результаты. [c.403]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]

    Р. изучает неск. типов переходов переходы между уровнями энергии, соответствующими вращат. движению молекул с постоянным электрич. моментом (см. Микроволновая спектроскопия), переходы, обусловленные взаимодействием электрич. квадрупольного момента ядра с внутр. электрич. полем в твердых телах (см. Ядерный квадрупо.пчый резонанс) и взаимодействием электронов проводимости с внеш. магн. полем (см. Циклотронный резонанс) переходы, обусловленные взаимодействием магн. моментов электронов или ядер с внеш. магн. полем в газах, жидкостях и твердых телах (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). [c.171]

    РАДИОСПЕКТРОСКОПИЯ, совокупность методов исследования состава, строения и реакц. способности в-в, к-рые основаны на явлениях резонансного поглощения или испускания энергии радиочастотного электромагн. поля. В магн. Р. регистрирукл поглощение магн. компоненты поля, обусловленное переходами между уровнями энергии, к-рые возникают при взаимод. магн. моментов электронов или ядер с вкеш. пост. магн. полем (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). Магн. переходы могут наблюдаться и в отсутствии внеш. магя. поля. Так, в твердых телах ЯМР в основном обусловлен прямым взаимод. между магн. дипольными моментами ядер, а для ядер со спинами / > /г — также взаимод. их электрич. квадрупольного момента с неоднородными электрич. мол. полями (см. Ядерный квадрупольный резонанс). [c.491]

    К Ф. м. а. относится масс-спектрометрия, к-рая позволяет определять в твердых и жидких в-вах почти все хим. элементы (пределы обнаружения до 10" —10 % по массе), а также является важным методом изотопного анализа и анализа орг. соединений. Ядерно-физ. методы, напр, активационный анализ, широка примен. при исследовании особо чистых в-в и геол. объектов. Активац. методы обеспечивают рекордно низкие пределы обнаружения элементов — до 10 г. Все шире использ. методы ядерного магнитного резонанса, ядерного квадрупольного резонанса, электронного парамагнитного резонанса, электронной Оже-спектро-скопии, оптико-акустической спектроскопии и др. [c.621]

    Ядерный квадрупольный резонанс. Квадрупольный момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Ядерный квадрупольный резонанс (ЯКР) можно наблюдать, если ядро находится в неоднородном электрическом поле. Тогда при взаимодействии градиента электрического поля с квадрупольным моментом ядра уровни энергии ядра будут расщеплены. Величина расщепления зависит от величины квадру-польного момента ядра и градиента поля. Если теперь на образец наложить переменное магнитное поле соответствующей частоты (перпендикулярное градиенту электрического поля), то под его воздействием магнитные моменты ядра будут изменяться и вещесл во станет поглощать энергию этого поля. [c.63]

    Ядерный квадрупольный резонанс 5/1023, 1024, 1029 2/713, 714, 727 3/141. 229. 230 4/334, 588, 793-795 Ядерный иагиетои 2/1244 5/1032 Ядерный магнитный резонанс 5/1024, [c.762]

    Ядра со спином / = О не имеют магнитного момента и не чувствительны к методу ЯМР. Ядра со спицом Va наиболее удобны для исследования методом ЯМР. Особенно большой чувствительностью к методу обладают протоны и ядра i F. Ядра со спинами, большими i/g, обладают также электрическим квадрупольным моментом. Наличие квадрупольного момента сильно усложняет наблюдение сигналов ЯМР, однако такие ядра могут быть изучены методом ядерного квадрупольного резонанса (ЯКР). Метод ЯКР имеет меньшее значение для органической химии и здесь не рассматривается. Для исследования с помощью ЯМР используются, главным образом, протоны, поскольку они присутствуют почти в каждой органической молекуле, а также в связи с особой чувствительностью протонов к этому методу. В дальнейшем речь будет идти почти исключительно о протонном магнитном резонансе (ПМР). [c.596]

    Открытие явлений электронного парамагнитного резонанса (ЭПР) советским физиком Е. К. Завойским в 1944 г. и ядерного магнитного резонанса (ЯМР) в 1946 г. группами американских физиков Э. М. Парселя и Ф. Блоха позволило с большим успехом исследовать магннтно-резонанс-ными методами многие физические и химические процессы и по-новому представить проблемы строения вещества [1]. В таких исследованиях применяется также и несколько позже открытое явление ядерного квадрупольного резонанса. Сорбционные явления изучаются по магнитной восприимчивости и по спектрам магнитного резонанса адсорбционных сис-тедг. В настоящей статье сделан обзор результатов, полученных прп исследовании свойств физически адсорбированного вещества. [c.207]

    Выбор метода квадрупольной релаксации ядер ионов в качестве метода детектирования состава координационной сферы иона обоснован результатами исследований механизма спин-решеточной релаксации ядер катионов [68—71]. Выбор катюнов лития в качестве эталонных был основан на следующих фактах. Соли лития хорошо растворимы во многих органических растворителях сигналы ядерного магнитного резонанса 1л сравнительно интенсивные, что позволяет изучать достаточно разбавленные растворы и проводить уверенную экстраполяцию к бесконечному разбавлению соли катионы лития обладают простейшей электронной оболочкой кроме того, свойства неводных растворов солей лития достаточно подробно исследованы различными физическими и физико-химическими методами. Это обеспечивает надежную интерпретацию результатов. [c.207]

    В межпакетном пространстве довольно подвижной водной фазой [5]. По мере обезвоживания интенсивность этого сигнала в спектре ЯМР 1Л быстро уменьшается с появлением боковых полос. Эти последние свидетельствуют о том, что часть обменных Ь1+-ионов теряет свою подвижность. По расщеплению боковых полос рассчитана константа квадрупольной связи (ККС) и оценен градиент электрет Кого поля в месте расположения ионов лития. Полученные результаты сопоставимы с аналогичными величинами для различных литийсодержа.щи еществ. После вакуумирования при 100°полосы исчезают, а центральный максимум становится асимметричным. Это явление связано с более сильными электрическими взаимодействиями квадруполь-ных моментов ядер с решеткой. Одним из возможных объяснений является внедрение обменных Ь1" -ионов в вакантные октаэдрические позиции структуры. Состояние воды в вёрмикулите отличается от монтмориллонита более прочной связью молекул с поверхностью. Соответственно ширина линий спектров ЯМР значительно выше, чем в монтмориллоните. В последнее время нами получены интересные данные и по ядерному магнитному резонансу в цеолитах и мономинеральных вяжущих. [c.5]

    Изотопические смеси. Внедрение изотопической примеси в кристаллическую решётку изотонически чистого материала вызывает в частности деформацию решётки из-за разности молярных объёмов изотопов. В ряде случаев эти искажения решётки в окрестности примесного изотопа можно исследовать с помощью такого локального метода, как ядерный магнитный резонанс (ЯМР). Локальные деформации решётки изменяют градиент электрического поля вблизи примеси. В результате уровни энергий у атомов с ненулевым ядерным квадрупольным моментом, находящихся в окрестности дефекта, будут иметь квадрупольное смещение, что, в свою очередь, приведёт к уширению линии ЯМР. Недавно С. Верховский с коллегами [72, 73] обнаружили такой эффект изотопического беспорядка в монокристаллах германия, исследуя спектры ЯМР на ядрах Ое. Довольно большой квадрупольный момент ядер Ое I = 9/2, eQ = —0,19 барн) и небольшая концентрация этих ядер в образцах, такая, что прямого диполь-дипольного взаимодействия между ядерными магнитными моментами практически не было, обеспечили высокую чувствительность ЯМР эксперимента по детектированию малых (порядка 10 А) локальных статических деформаций решётки вокруг резонансного ядра. Эта чувствительность почти на порядок величины выше, чем у традиционных методик — рентгеновской и нейтронной диффракции. Поэтому в определённых случаях ЯМР можно рассматривать как мощную методику контроля совершенства кристаллической решётки. [c.70]

    Возможности ЯМР как метода изучения химической связи количественно (считая по элементам) шире, чем ЭПР. Основная информация последнего получается за счет магнитных свойств центрального иона. Ядерный же резонанс позволяет получать информацию о всех составляющих комплекса и центрального иона, и л.игандов, и внешнесферных частиц, в том числе и растворителя, а также частей молекул растворителя и лигандов. Болл-хаузен [213] подчеркивает возможности ЯМР только в отношении лигандов. Однако, когда желательна однородная информация (а это бывает часто), то можно использовать ЯМР центрального иона для оценки коэффициента перекрывания, если осуществимо наблюдение сигналов ЯМР этого иона. Ясно, что это реально не только в случае дипольных ядер, но и квадрупольных. [c.256]

    Здесь не удалось рассмотреть ряд.ваяшых вопросов применения ЯМР в химии комплексных соединений. К их числу в первую очередь относятся изучение твердого тела, ионообменных смол [230—232], ЯМР во внутренних магнитных полях 1239], двойной ядерно-ядерный резонанс [234], влияние формы молекул на ядерную релаксацию [235, 36] и некоторые другие исследования, например по комплексам бора [237], фосфора [31] и фтора [238. Недостаточно рассмотрены работы по квадрупольным ядрам. В заключение хотелось бы выразить надежду, что как раз ограниченность материала вызовет у заинтересованного читателя желание глубже ознакомиться с магнитным резонансом и его многочисленными приложениями в различных областях химии. [c.259]

    Уровни тонкой структуры, связанные со спиновым моментом электрона, образуют в видимой и УФ-областях т, наз. мультиплетную структуру электройных спектров. Эти уровни обусловлены слабыми взаимодействиями магнитных и электрич. моментов ядер с электронными оболочками молекул. Их изучают методами ЯМР и ядерного квадрупольного резонанса. Расщепление уровней энергии во внешних магнитных (явление Зеемана) и электрических (явление Штарка) полях образует уровни магнитной и электрич. структуры макромолекул (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). [c.234]


Смотреть страницы где упоминается термин Ядерный магнитный и ядерный квадрупольный резонанс (ЯМР и Ядерный магнитный резонанс: [c.491]    [c.136]    [c.6]    [c.450]    [c.210]    [c.2]    [c.379]    [c.521]    [c.641]    [c.34]    [c.53]    [c.34]    [c.48]    [c.726]   
Смотреть главы в:

Строение и свойства координационных соединений -> Ядерный магнитный и ядерный квадрупольный резонанс (ЯМР и Ядерный магнитный резонанс




ПОИСК





Смотрите так же термины и статьи:

Квадрупольный резонанс

Резонанс г ядерный магнитный

Резонанс квадрупольный ядерны

Ядерный магнитный резонанс эффект квадрупольной релаксации



© 2025 chem21.info Реклама на сайте